scholarly journals Development of Indium Titanium Zinc Oxide Thin Films Used as Sensing Layer in Gas Sensor Applications

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Sheng-Po Chang ◽  
Ren-Hao Yang ◽  
Chih-Hung Lin

InTiZnO gas sensors with different oxygen ratios were fabricated by RF sputtering at room temperature. The sensing responses for five different gases, including ethanol, isopropanol (IPA), acetone (ACE), CO, and SO2, were reported. The InTiZnO gas sensor with the MSM (metal–semiconductor–metal) structure generated a higher sensing response when the O2/Ar ratio was increased to 10%. It also revealed high selectivity among these gases and good repeatability. Moreover, the UV light-activated InTiZnO gas sensors were also studied, which could reduce the operating temperature from 300 °C to 150 °C and did not seem to damage the sensing film, demonstrating long-term stability. The high response and selectivity revealed that InTiZnO thin films possess high potential to be applied in gas sensing technology.

2021 ◽  
Author(s):  
Zhihua Ying ◽  
Teng Zhang ◽  
Chao Feng ◽  
Fei Wen ◽  
Lili Li ◽  
...  

Abstract This present study reported a high-performance gas sensor, based on In2O3/ZnO composite material modified by polypeptides, with a high sensibility to NO2, where the In2O3/ZnO composite was prepared by a one-step hydrothermal method. A series of results through material characterization technologies showed the addition of polypeptides can effectively change the morphology and size of In2O3/ZnO crystals, and effectively improve the sensing performance of the gas sensors. Due to the single shape and small size, In2O3/ZnO composite modified by polypeptides increased the active sites on the surface. At the same time, the gas sensing properties of four different ratios of polypeptide-modified In2O3/ZnO gas sensors were tested. It was found that the In2O3/ZnO-10 material showed the highest response, excellent selectivity, and good stability at room temperature under UV light. In addition, the response of the In2O3/ZnO-10 gas sensor showed a strong linear relationship with the NO2 gas concentration. When the NO2 gas concentration was 20 ppm, the response time was as quick as 19s, and the recovery time was 57s. Finally, based on the obtained experimental characterization results and energy band structure analysis, a possible gas sensing mechanism is proposed.


2009 ◽  
Vol 13 (01) ◽  
pp. 84-91 ◽  
Author(s):  
Marcel Bouvet ◽  
Vicente Parra ◽  
Clémentine Locatelli ◽  
Hui Xiong

Phthalocyanines are organic-based materials which have attracted a lot of research in recent times. In the field of sensors, they present interesting and valuable potentialities as sensing elements for real gas sensor applications. In the present article, and taking some of our experiments as representative examples, we review the different ways of transduction applied to such applications. Some of the new tendencies and transducers for gas sensing based on phthalocyanine derivatives are also reported. Among them, electrical transduction (resistors, field-effect transistors, diodes, etc.) has been, historically, the most commonly exploited way for the detection and/or quantification of gas pollutants, vapors and aromas, according to the conducting behavior of phthalocyanines. We will focus precisely on these systems.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Rahul Kumar ◽  
Xianghong Liu ◽  
Jun Zhang ◽  
Mahesh Kumar

AbstractRoom-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.


2014 ◽  
Vol 974 ◽  
pp. 76-85 ◽  
Author(s):  
Ghenadii Korotcenkov ◽  
B.K. Cho

In this review different aspects of material and structural engineering of metal oxides aimed for application in conductometric gas sensors (chemiresistors) were analyzed. Results, mainly obtained for SnO2and In2O3–based sensors during surface functionalizing by noble metals have been used for showing an opportunity of material and structural engineering of metal oxides to optimize gas sensing characteristics.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.


2021 ◽  
Vol 13 (4) ◽  
pp. 724-733
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Hassan Algadi ◽  
Hasan Albargi ◽  
...  

In this paper, star-fruit-shaped CuO microstructures were hydrothermally synthesized and subsequently characterized through different techniques to understand morphological, compositional, structural, crystal, optical and vibrational properties. The formation of star-fruit-shaped structures along with some polygonal and spherical nanostructures was confirmed by FESEM analysis. XRD data and Raman spectrum confirmed the monoclinic tenorite crystalline phase of the CuO with crystal size 17.61 nm. Star-fruit-shaped CuO microstructures were examined for ethanol gas sensing behavior at various operating temperatures and concentrations. The gas response of 135% was observed at the optimal temperature of 225 °C. Due to excellent selectivity, stability and re-usability, the as-fabricated sensor based on star-fruit-shaped CuO micro-structures may be explored for future toxic gas sensor applications.


2016 ◽  
Vol 34 (1) ◽  
pp. 204-211 ◽  
Author(s):  
Vishal V. Burungale ◽  
Rupesh S. Devan ◽  
Sachin A. Pawar ◽  
Namdev S. Harale ◽  
Vithoba L. Patil ◽  
...  

AbstractRapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.


2009 ◽  
Vol 2009 ◽  
pp. 1-24 ◽  
Author(s):  
Yun Wang ◽  
John T. W. Yeow

Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs) has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 701 ◽  
Author(s):  
Verena Leitgeb ◽  
Katrin Fladischer ◽  
Frank Hitzel ◽  
Florentyna Sosada-Ludwikowska ◽  
Johanna Krainer ◽  
...  

Integration of metal oxide nanowires in metal oxide gas sensors enables a new generation of gas sensor devices, with increased sensitivity and selectivity. For reproducible and stable performance of next generation sensors, the electric properties of integrated nanowires have to be well understood, since the detection principle of metal oxide gas sensors is based on the change in electrical conductivity during gas exposure. We study two different types of nanowires that show promising properties for gas sensor applications with a Scanning Probe Microscope—Scanning Electron Microscope combination. Electron Beam Induced Current and Kelvin Probe Force Microscopy measurements with a lateral resolution in the nanometer regime are performed. Our work offers new insights into the dependence of the nanowire work function on its composition and size, and into the local interaction between electron beam and semiconductor nanowires.


Sign in / Sign up

Export Citation Format

Share Document