scholarly journals Soil Biological Fertility and Bacterial Community Response to Land Use Intensity: A Case Study in the Mediterranean Area

Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 211 ◽  
Author(s):  
Mohammad Yaghoubi Khanghahi ◽  
Pasqua Murgese ◽  
Sabrina Strafella ◽  
Carmine Crecchio

The current study was performed to investigate the effects of three different long-term land use intensities on adjacent soil plots, namely a winter wheat field, a grass-covered vineyard, and a cherry farm, on soil biochemical, microbial, and molecular parameters. The results showed the maximum content of soil organic matter (SOM) and microbial biomass carbon (MBC) observed in the grass-covered vineyard. Basal respiration (BSR) and the cumulated respiration (CSR) after 25 days of incubation were significantly higher in the grass-covered vineyard and cherry farm, respectively (BSR 11.84 mg CO2–C kg−1 soil d−1, CSR 226.90 mg CO2–C kg−1 soil). Grass-covered vineyard showed the highest soil biological fertility index (BFI) score (20) and ranked in the class IV (good) of soil biological fertility. Cereal field and cherry farm had lower BFI scores and the corresponding BFI class was III (medium). In addition, the maximum ribosomal RNA copy number and the highest abundance of oligotrophic bacterial groups (25.52% Actinobacteria, 3.45% Firmicutes, and 1.38% Acidobacteria) were observed in the grass-covered vineyard. In conclusion, the grass-covered vineyard is a more conservative system and could have a large potential to improve total carbon storage in soil, mainly because of the cover crop residue management and the low soil perturbation through the no-tillage system.

2020 ◽  
Vol 50 (12) ◽  
Author(s):  
Monique Souza ◽  
Mónica María Machado Vargas ◽  
Bárbara Santos Ventura ◽  
Vilmar Müller Júnior ◽  
Cláudio Roberto Fonsêca Sousa Soares ◽  
...  

ABSTRACT: Microbial biomass is a driving force in the dynamics of soil organic matter, and microbial activity is an indicator of soil quality in agroecosystems, reflecting changes in management practices and environmental conditions. We evaluated the effect of monoculture and intercropped winter cover crops on soil chemical attributes, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), urease, β-glucosidase, and fluorescein diacetate (FDA) hydrolysis activity, as well as onion yield in a no-tillage system. Soil is a Typic Humudept, and treatments were control with spontaneous vegetation, barley, rye, oilseed radish (OR), OR + rye, and OR + barley. The soil was sampled (0-10 cm) five times between June and December. There were no differences among treatments for MBC and BR, and the highest values for those attributes occurred in June, when cover plants were in their initial stage. Although, qCO2 was not affected by any treatment, it varied among sampling periods, ranging from 0.62 to 10 µg C-CO2 mg-1 MBC h-1, indicating a low- or no stress environment. Cover crops had little influence on enzyme activity, but FDA was lowered in areas with single crops of barley and rye. Average onion yield in cover crops treatments was 13.01 (Mg ha-1), 30-40% higher than in the control treatment.


2015 ◽  
Vol 46 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Diana Morales ◽  
Mónica Machado Vargas ◽  
Michele Pottes de Oliveira ◽  
Bruna Lunarde Taffe ◽  
Jucinei Comin ◽  
...  

ABSTRACT: Manure fertilization is a common practice, but little is known about its impacts on soil microbial activity and organic matter. Aiming to evaluate soil microbial response to nine years of successive applications of swine manure, organic carbon (TOC), total nitrogen (TN), pH, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), and enzyme (ß-glucosidase, phosphatase, arylsulphatase, and FDA) activities were measured in the 0-10cm soil layer, in a no-tillage system. Treatments were: control soil without fertilization (C), and application of two doses (104 and 209kg of N ha-1year-1) of urea (U1 and U2), pig slurry (PS1 and PS2) and deep litter (DL1 and DL2). TOC, TN, soil pH, MBC, and BR increased in soil fertilized with DL, and were lower in U treatments. Soils with U and DL application had higher qCO2, related to different sources of stressors like nutrient imbalance. Phosphatase and ß-glucosidase activities were not affected by treatments, increased with time, and had a strong correlation with MBC. We conclude that long-term swine manure applications increase microbial activity and soil organic matter, mainly in DL form; while urea applications have negative impacts on these indicators.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Elaine Novak ◽  
Laércio Alves Carvalho ◽  
Etenaldo Felipe Santiago ◽  
Irzo Isaac Rosa Portilho

ABSTRACT A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient) and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity) were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis). Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.


2018 ◽  
Vol 9 (3) ◽  
pp. 167-174
Author(s):  
Dian Ariyanti ◽  
Nurheni Wijayanto ◽  
Iwan Hilwan

Vegetation is one factor that can decrease carbon accumulation in the atmosphere. The diversity of plant species in each land use has different abilities to absorb carbon in the atmosphere. This research was conducted in Pesisir Barat Regency of Lampung Province on 4 (four) types of land use, namely: (1) natural forest in Balai Kencana Resort, Bukit Barisan National Park (2) oil palm plantation in Pekon Marang, (3) coffee plantation in Pekon Suka Mulya, and (4) agroforestry of repong damar in Pekon Pahmungan. This reserach aims to analyze the diversity of plant species and to calculate the potential of plant carbon stock and carbon sequestration (above ground biomass) using alometric equations in various types of land use in Pesisir Barat Regency. The research method was vegetation analysis to learn about the diversity of plant species and calculation of carbon stock using alometric equations. The results showed that the composition of plant species in Bukit Barisan NP found 83 plant species belonging to 37 families, in the palm plantation found 9 plant species belonging to 8 families, in the coffee garden found 17 plant species belonging to 11 families, and in agroforestry of repong damar found 73 plant species belonging to 33 families. The total carbon stock potential was 376.16 ton/ha and carbon sequestrated. 1 257.20 ton/ha with the highest carbon uptake available at repong damar agroforestry site of 901.11 ton/ha.Keywords: aboveground biomass, carbon, diversity, pesisir barat regency


2019 ◽  
Author(s):  
Fayong Li ◽  
Xinqiang Liang ◽  
Hua Li ◽  
Yingbin Jin ◽  
Junwei Jin ◽  
...  

Abstract Background Colloid-facilitated phosphorus (P) transport is a recognized important pathway for soil P loss in agricultural systems, but limited information is available on the soil aggregate-associated colloidal P. To elucidate the effects of aggregate size on the loss potential of colloidal P (P coll ) in agricultural systems, soils (0-20 cm depth) from six land use types were sampled in Zhejiang province in the Yangtz river delta region, China. The aggregate size fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and <0.053 mm) separated by wet-sieving method were analyzed.Results Results showed that the 0.26–2 mm small macroaggregates had the highest total P (TP) content. For acidic soils, the highest P coll content was also found in the 0.26–2 mm aggregate size, while the lowest was found in the <0.053 mm (silt+clay)-sized particles, the opposite of that found in alkaline soils. Paddy soils contained less P coll than other land use types. The P coll in total dissolved P (TDP) was dominated by <0.053 mm (silt+clay)-sized particles. Aggregate size did strongly influence the loss potential of P coll in paddy soils, where P coll contributed up to 83% TDP in the silt+clay sized particles. The P coll content was positively correlated with TP, Al, Fe and mean weight diameter (MWD). Aggregate associated total carbon (TC), total nitrogen (TN), C/P, and C/N had significant, but negative effects on the contribution of P coll to potential soil P losses. The P coll content of the aggregates was controlled by aggregate associated TP and Al content as well as soil pH value, with P coll loss potential from aggregates being controlled by its organic matter content.Conclusion Therefore, we conclude that management practices that increase soil aggregate stability or its organic carbon content will limit P coll loss from agricultural systems.


2021 ◽  
Vol 905 (1) ◽  
pp. 012002
Author(s):  
C Prayogo ◽  
C Muthahar ◽  
R M Ishaq

Abstract The cause of global warming is the increasing carbon concentration arising from industrial activities, burning of fossils, and land-use change. The purpose of this research was to find out the allometric equation to calculate the local bamboo biomass and then to be able to calculate how much carbon sequestration at bamboo riparian forest since this area was rarely being explored. The parameters observed were the height and diameter of the bamboo stem at 1.3 m height of 6 types of local bamboo using destructive sampling, along with the measurement of bamboo weight. The carbon content of the bamboo biomass, litter, and soil was measured to complement the estimation of total carbon sequestration. The results showed that the allometric equation for estimating local bamboo biomass is Y=0.6396 X1.6162 with R2=0.77, obtained from the relationship equations between dry weight and the diameter. Total carbon sequestration of this system ranged between 81 to 215 tons C ha−1.


Sign in / Sign up

Export Citation Format

Share Document