scholarly journals Cooling Ability/Capacity and Exergy Penalty Analysis of Each Heat Sink of Modern Supersonic Aircraft

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 223 ◽  
Author(s):  
Yu-Feng Mao ◽  
Yun-Ze Li ◽  
Ji-Xiang Wang ◽  
Kai Xiong ◽  
Jia-Xin Li

The aerospace-based heat sink is defined as a substance used for dissipating heat generated by onboard heat loads. They are becoming increasingly scarce in the thermal management system (TMS) of advanced aircraft, especially for supersonic aircraft. In the modern aircraft there are many types of heat sinks whose cooling abilities and performance penalties are usually obviously different from each other. Besides, the cooling ability and performance penalty of a single heat sink is even different under different flight conditions—flight altitude, Mach number, etc. In this study, the typical heat sinks which are the fuel mass, ram air, engine fan air, skin heat exchanger, and expendable heat sink will be studied. Their cooling abilities/capacities, and exergy penalties under different flight conditions have been systematically estimated and compared with each other. The exergy penalty presented in this paper refers to the exergy loss of aircraft caused by the extra weight, drag and energy extraction of various heat sinks. The estimation models, as well as the results and discussion have been elaborated in this paper, which can be can be used to further optimize the TMS of modern advanced aircraft, for example, the layout design of various heat sinks and the improvement the control algorithm.

2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.


2014 ◽  
Vol 487 ◽  
pp. 149-152 ◽  
Author(s):  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Vithyacharan Retnasamy

Thermal management of high power LED is crucial the reliability and performance of the LED affected by the heat produced during photon emission. Heat sinks are utilized to dissipate the heat and to lower the operating junction temperature of LED. This paper demonstrates a simulation work done to evaluate the influence heat sink fin number on the junction temperature and stress of single chip LED package using Ansys version 11. The heat sink with fin number of 4 fins, 6 fins and 8 fins were used and compared. Results showed that increase in heat sink fin number significantly reduces the junction temperature of the LED package.


2005 ◽  
Author(s):  
Scott D. Garner

This paper discusses the pros, cons and performance capabilities of a variety of thermal solutions including: conductive heat sinks, heat pipe assisted heat sinks, and pumped single solutions. The goal of the paper is to map performance regimes for various thermal solutions that will quickly allow thermal designers to select the appropriate technology for their requirements. The paper presents current technologies in a progressive manner discussing performance capabilities and limitations. Although innovative designs exist in every class of sink that push the capabilities of the technology there are basic limitations that define the overall performance envelops, and thus the need to move up the performance heirarchy to the next performance level. The limitations to conductive heat sinks are addressed and correlated to the industries transition to heat pipe assisted heat sinks starting with notebooks and currently progressing into the desktop segment. A brief section addresses solid metal conductive heat sinks with discussions focused on the physical limitation set by conduction which limits overall heat sink volume which in turn can be correlated to a maximum power that can be dissipated in standard commercial applications. The analysis presented and conclusions will be correlated to CPU power and the markets adoption of heat pipe assisted heat sinks. A more extensive section is devoted to heat pipe assisted heat sinks their pros, cons and physical limitations. A similar analysis as discussed in the first section of the paper outlines the anticipated transition points for pumped single phase solutions.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


1994 ◽  
Vol 116 (3) ◽  
pp. 206-211 ◽  
Author(s):  
R. A. Wirtz ◽  
Weiming Chen ◽  
Ronghua Zhou

Heat transfer experiments are reported on the thermal performance of longitudinal fin heat sinks attached to an electronic package which is part of a regular array of packages undergoing forced convection air cooling. The effect of coolant bypass on the performance of the heat sink is assessed and performance correlations for reduced heat transfer due to this effect are developed. These correlations are used to develop design guidelines for optimal performance.


Author(s):  
Rattan Tawney ◽  
Zahid Khan ◽  
Justin Zachary

Because of the current environmental requirements for zero discharge from power plants and scarcity of water, the cooling tower—a proven and industry-recognized conventional option for combined cycle application heat sinks—is being scrutinized by designers, developers, operators, and regulatory agencies. This paper is a guideline to selecting the most appropriate solution for the plant heat sink based on water availability, site location, and wastewater disposal requirements. The paper discusses wet as well as dry cooling systems and evaluates the impact of heat sink selection for cogeneration applications and merchant power plant cycling operation mode. For each proposed option, the performance, relative costs, and noise issues will be presented.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Rui Zhang ◽  
Marc Hodes ◽  
David A. Brooks ◽  
Vincent P. Manno

Robust precision temperature control of heat-dissipating photonics components is achieved by mounting them on thermoelectric modules (TEMs), which are in turn mounted on heat sinks. However, the power consumption of such TEMs is high. Indeed, it may exceed that of the component. This problem is exacerbated when the ambient temperature and/or component heat load vary as is normally the case. In the usual packaging configuration, a TEM is mounted on an air-cooled heat sink of specified thermal resistance. However, heat sinks of negligible thermal resistance minimize TEM power for sufficiently high ambient temperatures and/or heat loads. Conversely, a relatively high thermal resistance heat sink minimizes TEM power for sufficiently low ambient temperatures and heat loads. In the problem considered, total footprint of thermoelectric material in a TEM, thermoelectric material properties, component operating temperature, relevant component-side thermal resistances, and ambient temperature range are prescribed. Moreover, the minimum and maximum rates of heat dissipation by the component are zero and a prescribed value, respectively. Provided is an algorithm to compute the combination of the height of the pellets in a TEM and the thermal resistance of the heat sink attached to it, which minimizes the maximum sum of the component and TEM powers for permissible operating conditions. It is further shown that the maximum value of this sum asymptotically decreases as the total footprint of thermoelectric material in a TEM increases. Implementation of the algorithm maximizes the fraction of the power budget in an optoelectronics circuit pack available for other uses. Use of the algorithm is demonstrated through an example for a typical set of conditions.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012077
Author(s):  
Rajesh Akula ◽  
Chakravarthy Balaji

Abstract The goal of this paper is to investigate the usefulness of Phase Change Material based heat sinks in power surge operations. Experiments have been carried out on a PCM based heat sink for different fill ratios (0, 33, 66, and 99%) of the PCM and different orientations (0, 90, 180°) of the heat sink under constant and power surge heat loads. The heat sink with a fill ratio of 0% is considered as the baseline case for comparison. The heat sink with a fill ratio of 66% at 0° orientation recorded lower temperatures among all the fill ratios and orientations under both constant and power surge heat loads. Partial filling (66% fill ratio) of the PCM in the cavity is more effective than complete filling (99% fill ratio) in handling both constant and power surge heat loads.


Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


Sign in / Sign up

Export Citation Format

Share Document