Heat Sink Capabilities and Limitations: A Hierarchical Evaluation of Leading Thermal Technologies

2005 ◽  
Author(s):  
Scott D. Garner

This paper discusses the pros, cons and performance capabilities of a variety of thermal solutions including: conductive heat sinks, heat pipe assisted heat sinks, and pumped single solutions. The goal of the paper is to map performance regimes for various thermal solutions that will quickly allow thermal designers to select the appropriate technology for their requirements. The paper presents current technologies in a progressive manner discussing performance capabilities and limitations. Although innovative designs exist in every class of sink that push the capabilities of the technology there are basic limitations that define the overall performance envelops, and thus the need to move up the performance heirarchy to the next performance level. The limitations to conductive heat sinks are addressed and correlated to the industries transition to heat pipe assisted heat sinks starting with notebooks and currently progressing into the desktop segment. A brief section addresses solid metal conductive heat sinks with discussions focused on the physical limitation set by conduction which limits overall heat sink volume which in turn can be correlated to a maximum power that can be dissipated in standard commercial applications. The analysis presented and conclusions will be correlated to CPU power and the markets adoption of heat pipe assisted heat sinks. A more extensive section is devoted to heat pipe assisted heat sinks their pros, cons and physical limitations. A similar analysis as discussed in the first section of the paper outlines the anticipated transition points for pumped single phase solutions.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.

2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.


Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 223 ◽  
Author(s):  
Yu-Feng Mao ◽  
Yun-Ze Li ◽  
Ji-Xiang Wang ◽  
Kai Xiong ◽  
Jia-Xin Li

The aerospace-based heat sink is defined as a substance used for dissipating heat generated by onboard heat loads. They are becoming increasingly scarce in the thermal management system (TMS) of advanced aircraft, especially for supersonic aircraft. In the modern aircraft there are many types of heat sinks whose cooling abilities and performance penalties are usually obviously different from each other. Besides, the cooling ability and performance penalty of a single heat sink is even different under different flight conditions—flight altitude, Mach number, etc. In this study, the typical heat sinks which are the fuel mass, ram air, engine fan air, skin heat exchanger, and expendable heat sink will be studied. Their cooling abilities/capacities, and exergy penalties under different flight conditions have been systematically estimated and compared with each other. The exergy penalty presented in this paper refers to the exergy loss of aircraft caused by the extra weight, drag and energy extraction of various heat sinks. The estimation models, as well as the results and discussion have been elaborated in this paper, which can be can be used to further optimize the TMS of modern advanced aircraft, for example, the layout design of various heat sinks and the improvement the control algorithm.


2014 ◽  
Vol 602-605 ◽  
pp. 2713-2716 ◽  
Author(s):  
Xin Rui Ding ◽  
Yu Ji Li ◽  
Zong Tao Li ◽  
Yong Tang ◽  
Bin Hai Yu ◽  
...  

LED has been regarded as the next generation lighting source. As for high power LED lamps, heat accumulation will cause a series of problems. Therefore, thermal management is very important for designing a high power LED lamp. Three types of heat sinks are designed by using the finite element analysis (FEA) method for an 180W high power LED lamp. Then the optimized heat sinks are developed and experiments are performed to demonstrate the simulated results. At the same time, the thermal performances with different working angles are investigated experimentally. The heat sink with heat pipe has a better heat dissipation performance than the conventional heat sink under the same input power. The working angles of the lamps greatly influence the thermal performance of each heat sink. For the same heat sink, the temperature varies with different install directions and working angles. Finally, the heat sink with the best thermal performance is recommended. The results have practical significance in designing high power LED lamps.


2014 ◽  
Vol 487 ◽  
pp. 149-152 ◽  
Author(s):  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Vithyacharan Retnasamy

Thermal management of high power LED is crucial the reliability and performance of the LED affected by the heat produced during photon emission. Heat sinks are utilized to dissipate the heat and to lower the operating junction temperature of LED. This paper demonstrates a simulation work done to evaluate the influence heat sink fin number on the junction temperature and stress of single chip LED package using Ansys version 11. The heat sink with fin number of 4 fins, 6 fins and 8 fins were used and compared. Results showed that increase in heat sink fin number significantly reduces the junction temperature of the LED package.


2005 ◽  
Author(s):  
John R. Hartenstine ◽  
Jerome E. Toth

Die level power densities are hitting unprecedented fluxes of over 200W/cm2, in turn driving the junction-to-case and case-to-sink resistances higher than the sink to ambient resistance. The biggest potential for thermal improvement now lies within the heat sink to device interface. Reduction in this critical interface resistance can be realized through direct attach of the heat sink base to the silicon. Challenges to this approach include the near matching of the coefficient of thermal expansion (CTE) of these two surfaces. Design concepts for a heat pipe heat sink with a CTE similar to that of silicon are investigated. Design concepts take into account materials, heat sink design configurations, and material compatibility with heat pipe working fluids. Prototype test articles were designed and fabricated using a copper/molybdenum/copper laminate as the heat input surface. Test data indicating an evaporator thermal resistance of 0.080 cm2·°C/W at 290W/cm2 are presented.


1994 ◽  
Vol 116 (3) ◽  
pp. 206-211 ◽  
Author(s):  
R. A. Wirtz ◽  
Weiming Chen ◽  
Ronghua Zhou

Heat transfer experiments are reported on the thermal performance of longitudinal fin heat sinks attached to an electronic package which is part of a regular array of packages undergoing forced convection air cooling. The effect of coolant bypass on the performance of the heat sink is assessed and performance correlations for reduced heat transfer due to this effect are developed. These correlations are used to develop design guidelines for optimal performance.


Author(s):  
Emre O¨ztu¨rk ◽  
I˙lker Tarı

In this study, forced cooling of heat sinks mounted on CPUs was investigated. Heat sink effectiveness, effect of turbulence models, effect of radiation heat transfer and different heat sink geometries were numerically analyzed by commercially available computational fluid dynamics softwares Icepak and Fluent. The numerical results were compared with the experimental data and they were in good agreement. Conjugate heat transfer is simulated for all the electronic cards and packages by solving Navier-Stokes equations. Grid independent, well converged and well posed models were run and the results were compared. The best heat sink geometry is selected and it is modified in order to have lower maximum temperature distribution in the heat sink.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Author(s):  
Rattan Tawney ◽  
Zahid Khan ◽  
Justin Zachary

Because of the current environmental requirements for zero discharge from power plants and scarcity of water, the cooling tower—a proven and industry-recognized conventional option for combined cycle application heat sinks—is being scrutinized by designers, developers, operators, and regulatory agencies. This paper is a guideline to selecting the most appropriate solution for the plant heat sink based on water availability, site location, and wastewater disposal requirements. The paper discusses wet as well as dry cooling systems and evaluates the impact of heat sink selection for cogeneration applications and merchant power plant cycling operation mode. For each proposed option, the performance, relative costs, and noise issues will be presented.


2005 ◽  
Vol 127 (2) ◽  
pp. 397-403 ◽  
Author(s):  
Rattan Tawney ◽  
Zahid Khan ◽  
Justin Zachary

This paper is a guideline to selecting the most appropriate technology for the power plant heat sink based on water availability, site location, and wastewater disposal requirements. The paper discusses wet as well as dry cooling systems and evaluates the impact of the heat sink technology on the performance and cost of combined cycle power plants. Cogeneration applications and cycling plant operations are also considered. For each proposed option, the performance, relative costs, and noise issues will be presented.


Sign in / Sign up

Export Citation Format

Share Document