scholarly journals Evaluating Temperature Influence on Low-Cost Piezoelectric Transducer Response for 3D Printing Process Monitoring

Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 26
Author(s):  
Thiago Glissoi Lopes ◽  
Renata Maia Rocha ◽  
Paulo Roberto Aguiar ◽  
Felipe Aparecido Alexandre ◽  
Thiago Valle França

The 3D printing process deals with the production of three-dimensional objects with defined geometries. However, this manufacturing process has a crucial point established at the beginning of the object manufacturing, where anomalies can occur and compromise the entire object produced. The piezoelectric diaphragm has been studied as an alternative to the conventional acoustic emission (AE) sensor concerning the monitoring of structures and processes. It has in its assembling a ceramic element with piezoelectric properties, which makes its response sensitive to temperature variations. The Pencil Lead Break (PLB) method is widely used due to its efficiency in the characterization of AE sensors. The present work aims to study the influence of temperature on the piezoelectric diaphragm response for the monitoring of the 3D printing process. PLB tests were performed on the glass surface of a 3D printer at three different temperatures, and the raw signal was collected at 5 MHz sample rate. The signal was investigated in the time and frequency domain. The results demonstrate that the frequency response of the sensor is directly influenced by the temperature variations. In addition, the signal amplitude variations occur differently along the entire spectrum, and frequency bands with small and large amplitude variations can be selected for a comparison study. Furthermore, two frequency bands were carefully selected, and the mean error was obtained regarding the reference temperatures of 25 and 45 °C. It can be inferred that the piezoelectric transducer has low sensitivity to temperature variation if a proper frequency band is selected, where an acceptable error of 16.9% was obtained.

2013 ◽  
Vol 315 ◽  
pp. 987-991 ◽  
Author(s):  
Wahab Saidin ◽  
Abdullah Wagiman ◽  
Mustaffa Ibrahim

This paper presents the development of wood-based composites material for 3D Printing process. The aim is to characterize the waste material from wood powder (WD) as an alternative material and low cost production for rapid prototyping product. The powder blends containing wood powder (90-120µm) with commercial ZP102 material from Z Corporation was used as the composite material. The materials were mechanically blended to produce composition of WD/ZP102(vol.%) 25:70, 50:50 and 75:25 respectively. The material was successfully processed on 3D printers machine, to produce three-dimensional components and followed by post-treatment with ZMax solution to enhance the mechanical properties. The mechanical properties, dimensional accuracy and surface quality of the components were evaluated and the results were compared with the standard ZP102 material. The result shows that the mechanical properties improved with the increased of wood powder content up to 50 (vol.%). However, dimensional accuracy and surface quality were decreased as the wood content increased. Further work on powder preparation is continued for surface quality improvement.


2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


Author(s):  
Ghazi Qaryouti ◽  
Abdel Rahman Salbad ◽  
Sohaib A. Tamimi ◽  
Anwar Almofleh ◽  
Wael A. Salah ◽  
...  

The three-dimensional (3D) printing technologies represent a revolution in the manufacturing sector due to their unique characteristics. These printers arecapable to increase the productivitywithlower complexity in addition tothe reduction inmaterial waste as well the overall design cost prior large scalemanufacturing.However, the applications of 3D printing technologies for the manufacture of functional components or devices remain an almost unexplored field due to their high complexity. In this paper the development of 3D printing technologies for the manufacture of functional parts and devices for different applications is presented. The use of 3D printing technologies in these applicationsis widelyused in modelingdevices usually involves expensive materials such as ceramics or compounds. The recent advances in the implementation of 3D printing with the use of environmental friendly materialsin addition to the advantages ofhighperformance and flexibility. The design and implementation of relatively low-cost and efficient 3D printer is presented. The developed prototype was successfully operated with satisfactory operated as shown from the printed samples shown.


2020 ◽  
Vol 36 (3) ◽  
pp. 285-294
Author(s):  
Ying Mao ◽  
Wen-Hwa Chen ◽  
Ming-Hisao Lee

ABSTRACTTo evaluate the thermal deformation induced by 3D Printing (Three Dimensional Printing) process, a novel meshless analysis procedure is established. To account for the heat transfer and solidification effects of each printing layer from liquid to solid phase transition, the layer temperature is measured by the implanted thermocouples. Based on the temperature variation measured, the printing layer temperature can be averaged and considered as uniform for thermal analysis. In addition, as observed by the deformation of the printed target through experiment, only linear thermal elastic analysis is performed.A rigorous algorithm for simulating the 3D Printing process is presented herein. Since the interpolation functions are no longer polynomials, a simple integration scheme using uniform integration points is applied to calculate the global stiffness matrix. Thus, the density and location of the integration points can be easily adjusted to fulfill the required accuracy. Further, for practical implementation, the simulation is also carried out by the concept of equivalent layer.Demonstrative cases of printing a rectangular PLA (Polylactic Acid) brick are tackled to prove the accuracy and efficiency of the proposed meshless analysis procedure. The effects of layer thickness, equivalent layer and slenderness ratio on the thermal deformation of the printed brick are also investigated.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 936 ◽  
Author(s):  
Robert Brewin ◽  
Thomas Brewin ◽  
Joseph Phillips ◽  
Sophie Rose ◽  
Anas Abdulaziz ◽  
...  

Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting environmental stewardship, and leading to the production of large databases for use in environmental monitoring. 3D printing has the potential to create cheap, bespoke scientific instruments that have formerly required dedicated facilities to assemble. It can put instrument manufacturing into the hands of any citizen who has access to a 3D printer. In this paper, we present a simple hand-held device designed to measure the Secchi depth and water colour (Forel Ule scale) of lake, estuarine and nearshore regions. The device is manufactured with marine resistant materials (mostly biodegradable) using a 3D printer and basic workshop tools. It is inexpensive to manufacture, lightweight, easy to use, and accessible to a wide range of users. It builds on a long tradition in optical limnology and oceanography, but is modified for ease of operation in smaller water bodies, and from small watercraft and platforms. We provide detailed instructions on how to build the device and highlight examples of its use for scientific education, citizen science, satellite validation of ocean colour data, and low-cost monitoring of water clarity, colour and temperature.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 985 ◽  
Author(s):  
Lazaros Tzounis ◽  
Petros I. Bangeas ◽  
Aristomenis Exadaktylos ◽  
Markos Petousis ◽  
Nectarios Vidakis

A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.


Author(s):  
Laxmi Poudel ◽  
Chandler Blair ◽  
Jace McPherson ◽  
Zhenghui Sha ◽  
Wenchao Zhou

Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.


Healthcare ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 103 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Lin

Three-dimensional (3D) printing has great potential for establishing a ubiquitous service in the medical industry. However, the planning, optimization, and control of a ubiquitous 3D printing network have not been sufficiently discussed. Therefore, this study established a collaborative and ubiquitous system for making dental parts using 3D printing. The collaborative and ubiquitous system split an order for the 3D printing facilities to fulfill the order collaboratively and forms a delivery plan to pick up the 3D objects. To optimize the performance of the two tasks, a mixed-integer linear programming (MILP) model and a mixed-integer quadratic programming (MIQP) model are proposed, respectively. In addition, slack information is derived and provided to each 3D printing facility so that it can determine the feasibility of resuming the same 3D printing process locally from the beginning without violating the optimality of the original printing and delivery plan. Further, more slack is gained by considering the chain effect between two successive 3D printing facilities. The effectiveness of the collaborative and ubiquitous system was validated using a regional experiment in Taichung City, Taiwan. Compared with two existing methods, the collaborative and ubiquitous 3D printing network reduced the manufacturing lead time by 45% on average. Furthermore, with the slack information, a 3D printing facility could make an independent decision about the feasibility of resuming the same 3D printing process locally from the beginning.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 334 ◽  
Author(s):  
Cristina Pavon ◽  
Miguel Aldas ◽  
Juan López-Martínez ◽  
Santiago Ferrándiz

In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.


Sign in / Sign up

Export Citation Format

Share Document