scholarly journals Synthesis of Novel and Potential Antimicrobial, Antioxidant and Anticancer Chalcones and Dihydropyrazoles Bearing Isoxazole Scaffold

Proceedings ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 16
Author(s):  
Afzal Shaik ◽  
Palleapati Kishor ◽  
Venkata Kancharlapalli

A series of isoxazole based (E)-1-(isoxazole-5-yl)-3-(substituted phenyl)-prop-2-en-1-ones (chalcones, 3a-3o) and 3-(isoxazol-5-yl)-5-(substituted phenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide (dihydropyrazoles, 4a-4o) were synthesized, characterized and evaluated for their antimicrobial, antioxidant and anticancer properties. Chalcones exhibited excellent antibacterial and antioxidant activities whereas the dihydropyrazoles shown superior antifungal and anticancer activities. The compound 3l containing 3,4,5-trimethoxy phenyl ring showed the potent antibacterial activity (MIC = 1 µg/mL) as well as the antioxidant activity (IC50 = 5 µg/mL) whereas the dihydropyrazole, 4o (MIC = 0.5 µg/mL) bearing the 2-chloro-3,4-dimethoxyphenyl was the potent antifungal compound identified. The dihydropyrazoles 4n and 4h possessing 2-fluoro-3,4-dimethoxyphenyl and 3,4-dimethoxyphenyl substituents exhibited potent anticancer activity against prostate cancer cell line (DU-145) with MIC 2 and 4 µg/mL respectively. The structure activity relationships had shown that there is a marked influence of both electron withdrawing halogens and electron releasing methoxyl groups on the above biological activities. All the compounds were evaluated for toxicity on normal human cell lines (LO2) and found to be non-toxic. These studies could help to synthesize, explore and identify new isoxazole containing leads for antimicrobial, antioxidant and anticancer properties.

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2723 ◽  
Author(s):  
Ni Zhang ◽  
Jin Yang ◽  
Ke Li ◽  
Jun Luo ◽  
Su Yang ◽  
...  

Seventeen new flavone derivatives substituted at the 4′-OH position were designed, synthesized and evaluated for their anticancer and antibacterial activities. Among them, compounds 3, 4, 6f, 6e, 6b, 6c and 6k demonstrated the most potent antiproliferative activities against a human erythroleukemia cell line (HEL) and a prostate cancer cell line (PC3). The results also showed that the IC50 value of compounds 3, 4, 6f, 6e, 6b, 6c and 6k were close to that of the anticancer drug cisplatin (DDP) and lower than that of apigenin. All of the derivatives did not present antibacterial activities. The structure–activity relationships evaluation showed that the configuration of methyl amino acid might affect their biological activities.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1047 ◽  
Author(s):  
Afzal Shaik ◽  
Richie R. Bhandare ◽  
Kishor Palleapati ◽  
Srinath Nissankararao ◽  
Venkata Kancharlapalli ◽  
...  

Our previous work identified isoxazole-based chalcones and their dihydropyrazole derivatives as two important five-membered heterocycles having antitubercular activity. Hence, in the present study, we biologically evaluated 30 compounds, including 15 isoxazole ring-containing chalcones (17–31) and 15 dihydropyrazoles (32–46) derived from these chalcones for their antimicrobial, antioxidant, and anticancer activities. Chalcones exhibited superior antibacterial and antioxidant activities compared to dihydropyrazoles. Among the chalcones, compound 28 showed potent antibacterial (MIC = 1 µg/mL) and antioxidant activities (IC50 = 5 ± 1 µg/mL). Dihydropyrazoles, on the contrary, demonstrated remarkable antifungal and anticancer activities. Compound 46 (IC50 = 2 ± 1 µg/mL) showed excellent antifungal activity whereas two other dihydropyrazoles 45 (IC50 = 2 ± 1 µg/mL) and 39 (IC50 = 4 ± 1 µg/mL) exhibited potential anticancer activity. The compounds were also tested for their toxicity on normal human cell lines (LO2) and were found to be nontoxic. The active compounds that have emerged out of this study are potential lead molecules for the development of novel drugs against infectious diseases, oxidative stress, and cancer.


2020 ◽  
Vol 26 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Ulviye Acar Çevik ◽  
Derya Osmaniye ◽  
Serkan Levent ◽  
Begüm Nurpelin Sağlik ◽  
Betül Kaya Çavuşoğlu ◽  
...  

AbstractCancer is one of the most common causes of death in the world. Despite the importance of combating cancer in healthcare systems and research centers, toxicity in normal tissues and the low efficiency of anticancer drugs are major problems in chemotherapy. Nowadays the aim of many medical research projects is to discover new safer and more effective anticancer agents. 1,3,4-Thiadiazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities, including anticancer activities. The aim of this study was to determine the capacity of newly synthesized 1,3,4-thiadiazole compounds as chemotherapeutic agents. The structures of the obtained compounds were elucidated using 1H-NMR, 13C-NMR and mass spectrometry. Although the thiadiazole derivatives did not prove to be significantly cytotoxic to the tumour tissue cultures, compound 4i showed activity against the C6 rat brain cancer cell line (IC50 0.097 mM) at the tested concentrations.


2012 ◽  
Vol 84 (6) ◽  
pp. 1369-1378 ◽  
Author(s):  
Mikiko Sodeoka ◽  
Kosuke Dodo ◽  
Yuou Teng ◽  
Katsuya Iuchi ◽  
Yoshitaka Hamashima ◽  
...  

Chaetocin, a natural product isolated from fungi of Chaetomium species, is a member of the epipolythiodiketopiperazines (ETPs), which have various biological activities, including cytostatic and anticancer activities. Recently, the inhibitory activity toward histone methyltransferases (HMTs) was discovered for chaetocin. We previously reported the first total synthesis of chaetocin and various derivatives. During studies on the structure–activity relationship for HMT inhibition, we found that the enantiomer of chaetocin (ent-chaetocin) is a more potent apoptosis inducer than natural chaetocin in human leukemia HL-60 cells. Mechanistic studies showed that ent-chaetocin induces apoptosis through the caspase-8/caspase-3 pathway.


2020 ◽  
Vol 20 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Nandini Pathak ◽  
Ekta Rathi ◽  
Nitesh Kumar ◽  
Suvarna G. Kini ◽  
C. Mallikarjuna Rao

: Benzothiazole is an organic compound bearing a heterocyclic nucleus (thiazole) which imparts a broad spectrum of biological activities to it. The significant and potent activity of benzothiazole moiety influenced distinctively by nature and position of substitutions. This review summarizes the effect of various substituents in recent trends and approaches to design and develop novel benzothiazole derivatives for anticancer potential in different cell lines by interpreting the Structure- Activity Relationship (SAR) and mechanism of action of a wide range of derivatives. The list of derivatives is categorized into different groups and reviewed for their anticancer activity. The structure-activity relationship for the various derivatives revealed an excellent understanding of benzothiazole moiety in the field of cancer therapy against different cancer cell line. Data obtained from the various articles showed the potential effect of benzothiazole moiety and its derivatives to produce the peculiar and significant lead compound. The important anticancer mechanisms found are tyrosine kinase inhibition, topoisomerase inhibition and induction of apoptosis by Reactive Oxygen Species (ROS) activation. Therefore, the design and development of novel benzothiazole have broad scope in cancer chemotherapy.


KIMIKA ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 8-17
Author(s):  
Andrea Marie M. Reyes ◽  
Junie B. Billones

A quantitative structure-activity relationship (QSAR) study has been performed on curcumin analogues in order to establish the effect of variation of structural, electronic and topological properties  on  the  anti-proliferative  activity  against  prostate  cancer  cell  line  PC-3.  The structure-based  properties  were  calculated  by  the  use  of  Hyperchem®  and  Dragon® softwares  and  the  multi-linear  regression  equations  were  generated  by  the  use  of  SPSS® software. Six models of PC-3 activity have been developed according to the types of QSAR descriptors.  All  models  were  cross-validated  using  leave-one-out  (LOO)  method.  The models  indicate  that  a  more  potent  curcumin  derivative  against  PC-3  should  have  smaller surface area, greater volume, lower polarizability, and fewer oxygen and multiple bonds.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 283 ◽  
Author(s):  
Hosam O. Elansary ◽  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Diaa O. El-Ansary ◽  
Halina Ekiert ◽  
...  

Exploring new sources of polyphenols with biological activities that work against human diseases is the target of natural product studies. This study determined the polyphenol composition of the bark of Malus species M. baccata var. gracilis (Rehder) T.C.Ku and M. toringoides (Rehder) Hughes, using high-performance liquid chromatography with a diode-array detector (HPLC-DAD) analysis. The antiproliferative, cytotoxic, antioxidant and antimicrobial applications of these extracts, as well as the identified phenol, were studied. The HPLC-DAD analysis confirmed three polyphenols in the extracts out of the 21 screened compounds: protocatechuic acid, gallic acid, and catechin. The major constituents in M. baccata and M. toringoides were protocatechuic acid, at 3.16 and 7.15 mg 100 g−1 dry weight (DW), respectively, and catechin, at 5.55 and 6.80 mg 100 g−1 DW, respectively. M. baccata and M. toringoides bark extracts showed antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and ferric-reducing antioxidant power (FRAP) assays, which were attributed to the dominance of protocatechuic acid. The highest antiproliferative and cytotoxic effects were against Jurkat cells. Against MCF-7 and Hela cells, there was necrotic cell accumulation in the early apoptotic as well as the late apoptotic phase. The bark extracts showed noticeable antibacterial effects against Listeria monocytogenes, Bacillus cereus, and Escherichia coli. Protocatechuic acid showed comparable results to bark extracts. There were antifungal effects against Aspergillus ochraceus, A. niger, and Candida albicans, and the activities were higher than the commercial reagent. M. baccata and M. toringoides could be considered as a new source of phenolic acids, including protocatechuic acid with anticancer, antibacterial antifungal, and antioxidant-promising effects.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3937
Author(s):  
Hae-Jung Chae ◽  
Geum-Jin Kim ◽  
Barsha Deshar ◽  
Hyun-Jin Kim ◽  
Min-Ji Shin ◽  
...  

Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens’ metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 688
Author(s):  
Bandar A. Babgi ◽  
Jalal H. Alsayari ◽  
Bambar Davaasuren ◽  
Abdul-Hamid Emwas ◽  
Mariusz Jaremko ◽  
...  

CuBr(PPh3)2(4,6-dimethylpyrimidine-2-thione) (Cu-L) was synthesized by stirring CuBr(PPh3)3 and 4,6-dimethylpyrimidine-2-thione in dichloromethane. The crystal structure of Cu-L was obtained, and indicated that the complex adopts a distorted tetrahedral structure with several intramolecular hydrogen bonds. Moreover, a centrosymmetric dimer is formed by the intermolecular hydrogen bonding of the bromine acceptor created by symmetry operation 1−x, 1−y, 1−z to the methyl group (D3 = C42) of the pyrimidine–thione ligand. HSA-binding of Cu-L and its ligand were evaluated, revealing that Cu-L binds to HSA differently than its ligand. The HSA-bindings were modeled by molecular docking, which suggested that Cu-L binds to the II A domain while L binds between the I B and II A domains. Anticancer activities toward OVCAR-3 and HeLa cell lines were tested and indicated the significance of the copper center in enhancing the cytotoxic effect; negligible toxicities for L and Cu-L were observed towards a non-cancer cell line. The current study highlights the potential of copper(I)-phosphine complexes containing thione ligands as therapeutic agents.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11706
Author(s):  
Chen Zhao ◽  
Zhongjian Wang ◽  
Rongzong Cui ◽  
Le Su ◽  
Xin Sun ◽  
...  

Background Allium fistulosum L. has good nutritional value and is cultivated worldwide as an efficacious traditional medicinal plant. Its biological activities are attributable to its phytochemicals. Nitrogen is an essential nutrient for plant growth and development; however, the effect of nitrogen levels on the level of active components in this species is not well understood. Methods In this study, using urea fertilizer, we investigated the effects of different nitrogen levels (N0, N1, and N2 at 0, 130, and 260 kg/ha, respectively) on the phytochemical constituents , and antioxidant and anticancer properties of A. fistulosum. Results The results suggested that nitrogen fertilizers have a significant effect on the level of total phenols and flavonoids. The analysis of the antioxidant capacity revealed that the lowest IC50 values corresponded to plants treated with the highest nitrogen concentration. Anticancer activity was investigated against cancer cell lines (HeLa and HepG2), and the extracts of A. fistulosum treated with a high nitrogen level showed the highest antiproliferative effect. Collectively, our results suggest that nitrogen fertilizer application enhanced the quality of A. fistulosum, particularly its health benefits.


Sign in / Sign up

Export Citation Format

Share Document