scholarly journals Open Electronics for Medical Devices: State-of-Art and Unique Advantages

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1256 ◽  
Author(s):  
Pandey ◽  
Vora

A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2019 ◽  
Vol 5 (12) ◽  
pp. 88
Author(s):  
Kazuo Katoh

As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires “deconvolution.” Therefore, a microscope system’s individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 356 ◽  
Author(s):  
Alexander R. Groos ◽  
Thalia J. Bertschinger ◽  
Céline M. Kummer ◽  
Sabrina Erlwein ◽  
Lukas Munz ◽  
...  

Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple aerial surveys on the Kanderfirn in the Swiss Alps in 2017 and 2018 using open hardware and software of the Paparazzi UAV project. The open-source photogrammetry software OpenDroneMap was tested for the generation of high-resolution orthophotos and digital surface models (DSMs) from aerial imagery and cross-checked with the well-established proprietary software Pix4D. Accurately measured ground control points served for the determination of the geometric accuracy of the orthophotos and DSMs. A horizontal (xy) accuracy of 0.7–1.2 m and a vertical (z) accuracy of 0.7–2.1 m was achieved for OpenDroneMap, compared to a xy-accuracy of 0.3–0.5 m and a z-accuracy of 0.4–0.5 m obtained for Pix4D. Based on the analysis and comparison of different orthophotos and DSMs, surface elevation, roughness and brightness changes from 3 June to 29 September 2018 were quantified. While the brightness of the glacier surface decreased linearly over the ablation season, the surface roughness increased. The mean DSM-based elevation change across the glacier tongue was 8 m, overestimating the measured melting and surface lowering at the installed ablation stakes by about 1.5 m. The presented results highlight that self-built fixed-wing UAVs in tandem with open-source photogrammetry software are an affordable alternative to commercial remote-sensing platforms and proprietary software. The applied low-cost approach also provides great potential for other regions and geoscientific disciplines.


Author(s):  
Sachin Bijadi ◽  
Erik de Bruijn ◽  
Erik Y. Tempelman ◽  
Jos Oberdorf

Low-cost 3D desktop printing, although still in its infancy, is rapidly maturing, with a wide range of applications. With its ease of production and affordability, it has led to development of a global maker culture, with the design and manufacture of artefacts by individuals as a collaborative & creative hobbyist practice. This has enabled mass customization of goods with the potential to disrupt conventional manufacturing, giving more people access to traditionally expensive products like prosthetics and medical devices [1], as is the case with e-NABLE, a global community providing open source prosthetics for people with upper limb deficiencies. However one of the major barriers to proliferation of 3D printing as a major manufacturing method is the limitation of compatible materials for use with the technology [2]. This places constraints on the design approach, as well as the complexity & functionality of artefacts that can be produced with 3D printing as compared to traditional manufacturing methods. As a result, devices like the e-NABLE Raptor Reloaded prosthetic hand, which is designed specifically to be produced via a single extruder FDM desktop 3D printer, have limited functionality as compared to conventional prosthetics, leading to low active use and prosthesis abandonment [3]. However, with the advent of multi-material desktop 3D printing, and increasing availability of a broader range of compatible materials (of varying characteristics) [2], there is scope for improving capabilities of low-cost prosthetics through the creation of more sophisticated multi-material functional integrated devices. This work documents the exploration of potential applications of multi-material 3D printing to improve production, capabilities and usability of low-cost open source prosthetics. Various material combinations were initially studied and functional enhancements for current 3D printed prosthetics were prototyped using key material combinations identified. Further, a user-centered design approach was utilized to develop a novel multi-material anthropomorphic prosthetic hand ‘ex_machina’ based on a modular platform architecture, to demonstrate the scope for reduced build complexity and improved dexterity & functional customization enabled by dual extrusion FDM desktop 3D printing. A full prototype was built & tested with a lead user, and results analyzed to determine scope for optimization.


2020 ◽  
Vol 4 (2) ◽  
pp. 49 ◽  
Author(s):  
Joshua M. Pearce

Distributed digital manufacturing offers a solution to medical supply and technology shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art of open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top twenty technologies requested by the Government of India. The results show that the majority of the actual medical products have some open source development, however, only 15% of the supporting technologies required to produce them are freely available. The results show there is still considerable research needed to provide open source paths for the development of all the medical hardware needed during pandemics. Five core areas of future research are discussed, which include (i) technical development of a wide-range of open source solutions for all medical supplies and devices, (ii) policies that protect the productivity of laboratories, makerspaces, and fabrication facilities during a pandemic, as well as (iii) streamlining the regulatory process, (iv) developing Good-Samaritan laws to protect makers and designers of open medical hardware, as well as to compel those with knowledge that will save lives to share it, and (v) requiring all citizen-funded research to be released with free and open source licenses.


Android is one of the famous mobile operating system created by Google company. Advantages of the android operating system itself is to provide an open platform (open source) for developers to create their own millions of applications that will be used for a wide range of mobile devices (mobile devices). Needs of information technology is developing rapidly. Mobile even more Smartphone is one of the means used to obtain information more quickly and accurately, as well as being tools needed in various fields. Especially when you're enjoying a holiday somewhere and need information right away, of course it was very helpful in finding such information. While on vacation in a place we definitely want to taste the culinary place and it has become a lifestyle in today. That's what we call the culinary tour. Culinary tourism itself is an action done a lot of people in the field of dietary needs, for entertainment. Based on application compatibility testing Nyapek culinary tourism in the city of Bogor based on Android can run optimally and display interface on the phone with Minimal OS v5.0 (Lollipop) with a 5-inch screen


Author(s):  
Ana Rubio Denniss ◽  
Thomas E. Gorochowski ◽  
Sabine Hauert

Engineering microscopic collectives of cells or microrobots is challenging due to the often-limited capabilities of the individual agents, our inability to reliably program their motion and local interactions, and difficulties visualising their behaviours. Here, we present a low-cost, modular and open-source Dynamic Optical MicroEnvironment (DOME) and demonstrate its ability to augment microagent capabilities and control collective behaviours using light. The DOME offers an accessible means to study complex multicellular phenomena and implement de-novo microswarms with desired functionalities. Corresponding author(s) Email: [email protected] [email protected]


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 627 ◽  
Author(s):  
Eduardo Viciana ◽  
Alfredo Alcayde ◽  
Francisco Montoya ◽  
Raul Baños ◽  
Francisco Arrabal-Campos ◽  
...  

An important challenge for our society is the transformation of traditional power systems to a decentralized model based on renewable energy sources. In this new scenario, advanced devices are needed for real-time monitoring and control of the energy flow and power quality (PQ). Ideally, the data collected by Internet of Thing (IoT) sensors should be shared to central cloud systems for online and off-line analysis. In this paper openZmeter (oZm) is presented as an advanced low-cost and open-source hardware device for high-precision energy and power quality measurement in low-voltage power systems. An analog front end (AFE) stage is designed and developed for the acquisition, conditioning, and processing of power signals. This AFE can be stacked on available quadcore embedded ARM boards. The proposed hardware is capable of adapting voltage signals up to 800 V AC/DC and currents up to thousands of amperes using different probes. The oZm device is described as a fully autonomous open-source system for the computation and visualization of PQ events and consumed/generated energy, along with full details of its hardware implementation. It also has the ability to send data to central cloud management systems. Given the small size of the hardware design and considering that it allows measurements under a wide range of operating conditions, oZm can be used both as bulk metering or as metering/submetering device for individual appliances. The design is released as open hardware and therefore is presented to the community as a powerful tool for general usage.


HardwareX ◽  
2021 ◽  
Vol 9 ◽  
pp. e00183
Author(s):  
Mohannad Jabbar Mnati ◽  
Raad Farhood Chisab ◽  
Azhar M. Al-Rawi ◽  
Adnan Hussein Ali ◽  
Alex Van den Bossche

2021 ◽  
Vol 11 (9) ◽  
pp. 3762
Author(s):  
Joonyoung Kim ◽  
Taewoong Kang ◽  
Dongwoon Song ◽  
Seung-Joon Yi

In this paper, we present a new open source dynamic quadruped robot, PADWQ (pronounced pa-dook), which features 12 torque controlled quasi direct drive joints with high control bandwidth, as well as onboard depth sensor and GPU-equipped computer that allows for a highly dynamic locomotion over uncertain terrains. In contrast to other dynamic quadruped robots based on custom actuator and machined metal structural parts, the PADWQ is entirely built from off the shelf components and standard 3D printed plastic structural parts, which allows for a rapid distribution and duplication without the need for advanced machining process. To make sure that the plastic structural parts can withstand the stress of dynamic locomotion, we performed finite element analysis (FEA) on leg structural parts as well as a continuous walking test using the physical robot, both of which the robot has passed successfully. We hope this work to help a wide range of researchers and engineers that need an affordable, highly capable and easily customizable quadruped robot.


Sign in / Sign up

Export Citation Format

Share Document