scholarly journals Effects of Organosolv Pretreatment Using Temperature-Controlled Bench-Scale Ball Milling on Enzymatic Saccharification of Miscanthus × giganteus

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2657 ◽  
Author(s):  
Tae Kim ◽  
Dongjoong Im ◽  
Kyeong Oh ◽  
Tae Kim

The effect of organosolv pretreatment was investigated using a 30 L bench-scale ball mill reactor that was capable of simultaneously performing physical and chemical pretreatment. Various reaction conditions were tried in order to discover the optimal conditions for the minimal cellulose loss and enhanced enzymatic digestibility of Miscanthus × giganteus (MG), with conditions varying from room temperature to 170 °C for reaction temperature, from 30 to 120 min of reaction time, from 30% to 60% ethanol concentration, and a liquid/solid ratio (L/S) of 10–20 under non-catalyst conditions. The pretreatment effects were evaluated by chemical compositional analysis, enzymatic digestibility test and X-ray diffraction of the treated samples. The pretreatment conditions for the highest glucan digestibility yield were determined as 170 °C, reaction time of 90 min, ethanol concentration of 40% and L/S = 10. With these pretreatment conditions, the XMG (xylan + mannan + galactan) fractionation yield and delignification were 84.4% and 53.2%, respectively. The glucan digestibility of treated MG after the aforementioned pretreatment conditions was 86.0% with 15 filter paper units (FPU) of cellulase (Cellic® CTec2) per g-glucan enzyme loading.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5087-5109
Author(s):  
Xihui Zhang ◽  
Guang Yu ◽  
Xiaoyan Feng ◽  
Zhenqiu Li ◽  
Bin Li ◽  
...  

Ammonia-ethanol-water (AEW) pretreatment was adopted to treat wheat straw for ameliorating saccharification with the integrated preparation of submicron lignin spheres (SLS). Results showed that AEW pretreatment could remove 77% of lignin and 90% of extractives, thus increasing specific surface area and porosity of the substrate and finally enhancing the release of fermentable sugars in saccharification. Under the optimal pretreatment conditions (170 °C for 2 h, ethanol concentration 55% (v/v), ammonia concentration 7.5 wt%), the final total sugar yield reached 81.7% after pretreatment and saccharification, which was 2.25 times higher compared to the conventional ethanol organosolv pretreatment. Moreover, washing could be excluded for AEW-pretreated wheat straw before saccharification, and both ethanol and ammonia could be readily recovered and reused, making the AEW pretreatment clean and sustainable. In addition, SLS with hollow structure and average diameter of 161.2 ± 53.6 nm were fabricated using the fractionated lignin, which could offset the overall cost of AEW pretreatment.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clementine L. Chambon ◽  
Pedro Verdía ◽  
Paul S. Fennell ◽  
Jason P. Hallett

AbstractThe ionoSolv process is one of the most promising technologies for biomass pretreatment in a biorefinery context. In order to evaluate the transition of the ionoSolv pretreatment of biomass from bench-scale experiments to commercial scale, there is a need to get better insight in process intensification. In this work, the effects of biomass loading, particle size, pulp washing protocols and 100-fold scale up for the pretreatment of the grassy biomass Miscanthus giganteus with the IL triethylammonium hydrogen sulfate, [TEA][HSO4], are presented as a necessary step in that direction. At the bench scale, increasing biomass loading from 10 to 50 wt% reduced glucose yields from 68 to 23% due to re-precipitation of lignin onto the pulp surface. Omitting the pulp air-drying step maintained saccharification yields at 66% at 50 wt% loading due to reduced fiber hornification. 100-fold scale-up (from 10 mL to 1 L) improved the efficacy of ionoSolv pretreatment and increasing loadings from 10 to 20 wt% reduced lignin reprecipitation and led to higher glucose yields due to the improved heat and mass transfer caused by efficient slurry mixing in the reactor. Pretreatment of particle sizes of 1–3 mm was more effective than fine powders (0.18–0.85 mm) giving higher glucose yields due to reduced surface area available for lignin re-precipitation while reducing grinding energy needs. Stirred ionoSolv pretreatment showed great potential for industrialization and further process intensification after optimization of the pretreatment conditions (temperature, residence time, stirring speed), particle size and biomass loading. Pulp washing protocols need further improvement to reduce the incidence of lignin precipitation and the water requirements of lignin washing.


2021 ◽  
Author(s):  
Clementine L. Chambon ◽  
Pedro Verdía ◽  
Paul S. Fennell ◽  
Jason Hallett

Abstract Background: The ionoSolv process is one of the most promising technologies for biomass pretreatment in a biorefinery context. In order to evaluate the transition of the ionoSolv pretreatment of biomass from bench-scale experiments to biorefinery scale, there is a need to get better insight in process intensification. In this work, the effects of biomass loading, particle size, pulp washing protocols and 100-fold scale up for the pretreatment of the grassy biomass Miscanthus giganteus with the IL triethylammonium hydrogen sulfate, [TEA][HSO4], are presented. Results: At the bench scale, increasing biomass loading from 10 wt% to 50 wt% reduced glucose yields from 68% to 23% due to re-precipitation of lignin onto the pulp surface. Omitting the pulp air-drying step maintained saccharification yields at 66% at 50 wt% loading due to reduced fiber hornification. 100-fold scale-up (from 10 mL to 1 L) improved the efficacy of ionoSolv pretreatment and increasing loadings from 10 wt% to 20 wt% reduced lignin reprecipitation and led to higher glucose yields due to the improved heat and mass transfer caused by efficient slurry mixing in the reactor. Pretreatment of particle sizes of 1–3 mm was more effective than fine powders (0.18–0.85 mm) giving higher glucose yields due to reduced surface area available for lignin re-precipitation while reducing grinding energy needs.Conclusion: Stirred ionoSolv pretreatment showed great potential for industrialization and further process intensification after optimization of the pretreatment conditions (temperature, residence time, stirring speed), particle size and biomass loading. Pulp washing protocols need further improvement to reduce the incidence of lignin precipitation and the water requirements of lignin washing.


2021 ◽  
Author(s):  
Clementine Chambon ◽  
Pedro Verdía ◽  
Paul Fennell ◽  
Jason Hallett

Abstract Background: The ionoSolv process is one of the most promising technologies for biomass pretreatment in a biorefinery context. In order to evaluate the transition of the ionoSolv pretreatment of biomass from bench-scale experiments to biorefinery scale, there is a need to get better insight in process intensification. In this work, the effects of biomass loading, particle size, pulp washing protocols and 100-fold scale up for the pretreatment of the grassy biomass Miscanthus giganteus with the IL triethylammonium hydrogen sulfate, [TEA][HSO4], are presented. Results: At the bench scale, increasing biomass loading from 10 wt% to 50 wt% reduced glucose yields from 68% to 23% due to re-precipitation of lignin onto the pulp surface. Omitting the pulp air-drying step maintained saccharification yields at 66% at 50 wt% loading due to reduced fiber hornification. 100-fold scale-up (from 10 mL to 1 L) improved the efficacy of ionoSolv pretreatment and increasing loadings from 10 wt% to 20 wt% reduced lignin reprecipitation and led to higher glucose yields due to the improved heat and mass transfer caused by efficient slurry mixing in the reactor. Pretreatment of particle sizes of 1–3 mm was more effective than fine powders (0.18–0.85 mm) giving higher glucose yields due to reduced surface area available for lignin re-precipitation while reducing grinding energy needs.Conclusion: Stirred ionoSolv pretreatment showed great potential for industrialization and further process intensification after optimization of the pretreatment conditions (temperature, residence time, stirring speed), particle size and biomass loading. Pulp washing protocols need further improvement to reduce the incidence of lignin precipitation and the water requirements of lignin washing.


2011 ◽  
Vol 138-139 ◽  
pp. 933-936 ◽  
Author(s):  
Xuan Chen ◽  
Hong Yu Luo ◽  
Jun Yu ◽  
Peng Xiang Yue ◽  
Lin Zhou ◽  
...  

Alcohol-alkali method and base digestion method were investigated to extract proteins from tea residues, respectively. According to single factorial experiments, results showed that the optimal extraction technology of alcohol-alkali method were pH 12, temperature of 80 °C, ethanol concentration of 60%, liquid-solid ratio of 40, 60 min, and the protein extraction rate reached 15.0%. And the optimal extract conditions of base digestion were pH 12, temperature of 80 °C, liquid-solid ratio of 50, 80 min, which made the protein yield reached 31.5%. Furthermore, alcohol-alkali method was more beneficial to protein extraction from tea residues under lower temperature and weak alkali condition (40-60 °C, pH 8-10). While base digestion had higher extraction yield under high temperature and strong alkali condition (60-80 °C, pH 11-12).


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1149 ◽  
Author(s):  
Jing Liu ◽  
Zhenggang Gong ◽  
Guangxu Yang ◽  
Lihui Chen ◽  
Liulian Huang ◽  
...  

Due to the invalidity of traditional models, pretreatment conditions dependent parameter of susceptible dissolution degree of xylan (dX) was introduced into the kinetic models. After the introduction of dX, the dissolution of xylan, and the formation of xylo-oligosaccharides and xylose during ethanol based auto-catalyzed organosolv (EACO) pretreatments of bamboo were well predicted by the pseudo first-order kinetic models (R2 > 97%). The parameter of dX was verified to be a variable dependent of EACO pretreatment conditions (such as solvent content in pretreatment liquor and pretreatment temperature). Based on the established kinetic models of xylan dissolution, the dissolution of glucan and the formation of degradation products (furfural and acetic acid) could also be empirically modeled (R2 > 97%). In addition, the relationship between xylan and lignin removal can provide guidance for alleviating the depositions of lignin or pseudo-lignin. The parameter of dX derived novel kinetic models can not only be used to reveal the multi-step reaction mechanisms of xylan, but also control the final removal of main components in bamboo during EACO pretreatments, indicating scientific and practical significance for governing the biorefinery of woody biomass.


2018 ◽  
pp. 61-67
Author(s):  
Ornjira Choopakar ◽  
Chongchin Polprasert ◽  
Panagiotis Elefsiniotis ◽  
Supawadee Polprasert

This research aimed to evaluate the effect of the type of solvent, pH, substrate loading, and reaction time on the chemical components of palm empty fruit bunches (EFB). Steam pretreatment was set up at a temperature of 121 °C and pressure of 1.18 bar, using an autoclave with substrate loading of 5, 10, 15 and 20 % w/v at reaction times of 15 and 60 min. Distilled water, waste glycerol, alkaline glycerol and acidic glycerol were compared as solvents during steam pretreatment. The results showed that with distilled water, better pretreatment was achieved at 5 % and 10 % loading for 60 min. During the pretreatment with waste glycerol at 5 % loading an increase on the reaction time from 15 to 60 min reaction resulted in a remarkable increase in reducing sugar in the liquid phase. Overall, the best steam pretreatment conditions were observed using alkaline glycerol at 5 % w/v and 15 min reaction time, resulting in holocellulose (cellulose plus hemicellulose) increase to 87.98 % and a lignin decrease to 9.17 %. However, pretreatment with glycerol for 15 min was better than those for 60 min using either glycerol or distilled water. The results suggest that waste glycerol during steam pretreatment of EFB can be utilized effectively at short reaction times and at an increased pH to achieve a high output of cellulose and hemicellulose for sugar conversion in the bioethanol fermentation process.


2019 ◽  
Vol 31 (5) ◽  
pp. 1045-1048
Author(s):  
Quang Thuong Tran ◽  
Loan Thi Thanh Vu ◽  
Tram Huyen Le ◽  
Ly Thi Phuong Giang ◽  
Toyonobu Usuki

The objective of this study was to evaluate the effects of extraction parameters (ethanol concentration, extraction ratio of solvent to raw material and extraction time) on the yield of spinosin from the seeds of Ziziphus mauritiana Lam. Box-Behnken factorial design was used in association with response surface methodology. The optimal extraction conditions were an ethanol concentration of 61 %, 40 (v/w) liquid-to-solid ratio, and 2.6 h extraction time with reflux. Spinosin was purified using Diaion HP20SS as an adsorbent. The maximum spinosin yield was 1.18 mg/g raw material. Present findings can be applied to future approaches for maximizing the extraction of spinosin from Z. mauritiana Lam. seeds.


2012 ◽  
Vol 455-456 ◽  
pp. 503-506 ◽  
Author(s):  
Guo Bing Li ◽  
Hai Lin ◽  
Yan Li Ma ◽  
Yi Su

When precipitated silica was prepared from yellow phosphorus slag by the phosphoric acid leaching, the Fe content can not meet the quality requirements of the product. This article indicates the method of purifying precipitated silica with nitric acid solution, which may decrease the Fe content to about 0.02%. The purification optimum technical conditions are: the nitric acid concentration 8%, reaction time 2.0 hours, reaction temperature 343.15K, fluid solid ratio 4:1, stirring speed 300 rpm.


Sign in / Sign up

Export Citation Format

Share Document