scholarly journals Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3509
Author(s):  
Mei Ong ◽  
Nor-Insyirah Syahira Abdul Latif ◽  
Hui Leong ◽  
Bello Salman ◽  
Pau Show ◽  
...  

The potential of Caulerpa lentillifera, Gracilaria coronopifolia and Chaetomorpha linum, as biomass feedstock was investigated in this study. It was concluded that seaweed is more suitable for bio-based products synthesis, i.e., bioplastic and bio-lubricants, instead of biofuels due to its relatively low calorific value (~12 MJ/kg). Since seaweed has high moisture content (~80%), hydrothermal liquefaction is recommended, and its efficiency can be further enhanced through microwave technology. Besides, it is found that the thermal degradation of seaweed was best described with the reaction order of 1. The kinetic results also indicated that seaweed consists of lower activation energy (<30 kJ/mol) in comparison with terrestrial biomass (50–170 kJ/mol). Hence, seaweed has a high potential to be used as biomass feedstock, particularly Chaetomorpha linum, as it has no conflict with other interests. Lastly, acetic-acid pre-treatment was suggested to be an optional process in order to increase the algal conversion efficiency as it can reduce up to 25% of ash content.

2011 ◽  
Vol 64 (8) ◽  
pp. 1723-1729 ◽  
Author(s):  
H. B. Nielsen ◽  
S. Heiske

In the present study we tested four macroalgae species – harvested in Denmark – for their suitability of bioconversion to methane. In batch experiments (53 °C) methane yields varied from 132 ml g volatile solids−1 (VS) for Gracillaria vermiculophylla, 152 ml g VS−1 for Ulva lactuca, 166 ml g VS−1 for Chaetomorpha linum and 340 ml g VS−1 for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5–2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during ‘green tides’ in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.


2020 ◽  
Vol 71 (1) ◽  
pp. 19-27
Author(s):  
Günay Özbay ◽  
Caglar Cekic ◽  
Muhammad Syarhabil Ahmad ◽  
Erkan Sami Kokten

In the present study, bio-oil produced from vacuum pyrolysis of woody biomass has been investigated as a source of chemical feedstock. Bio-based resins were produced using the bio- oil with phenol substitutions ranging from 10 to 30 wt%. The conventional GC/MS analysis was carried out for the evaluation of the chemical composition of bio-oil. TGA, DSC and FT-IR analyses were used in order to characterize the bio-oil-phenol-formaldehyde (BPF) resins. The bonding quality of wood samples bonded with the BPF resins was investigated under different pre-treatment conditions. The highest shear strength was observed for the control samples bonded with the laboratory PF resin. As the amount of bio-oil was increased up to 30 wt%, the shear strength of the samples decreased from 12.08 to 11.76 N/mm2. The bonding performance was not negatively affected by the combination of bio-oil under dry conditions. According to TS EN 12765 standard, the relevant performance requirements for bonded samples under dry conditions must be at least 10 N/mm2. Relating to the standard, all samples bonded with BPF resins obtained the requirements for durability class C1. Under wet conditions, the bonding performance was negatively affected by the addition of bio-oil. However, the BPF resins fulfilled the durability requirements for C1, C2, and C3 specified in EN 12765 (2002).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Daegi Kim ◽  
Pandji Prawisudha ◽  
Kunio Yoshikawa

In Korea, municipal solid waste (MSW) treatment is conducted by converting wastes into energy resources using the mechanical-biological treatment (MBT). The small size MSW to be separated from raw MSW by mechanical treatment (MT) is generally treated by biological treatment that consists of high composition of food residue and paper and so forth. In this research, the hydrothermal treatment was applied to treat the surrogate MT residue composed of paper and/or kimchi. It was shown that the hydrothermal treatment increased the calorific value of the surrogate MT residue due to increasing fixed carbon content and decreasing oxygen content and enhanced the dehydration and drying performances of kimchi. Comparing the results of paper and kimchi samples, the calorific value of the treated product from paper was increased more effectively due to its high content of cellulose. Furthermore, the change of the calorific value before and after the hydrothermal treatment of the mixture of paper and kimchi can be well predicted by this change of paper and kimchi only. The hydrothermal treatment can be expected to effectively convert high moisture MT residue into a uniform solid fuel.


2019 ◽  
Vol 128 ◽  
pp. 105333 ◽  
Author(s):  
Brenda J. Alvarez-Chavez ◽  
Stéphane Godbout ◽  
Joahnn H. Palacios-Rios ◽  
Étienne Le Roux ◽  
Vijaya Raghavan

2018 ◽  
Vol 61 ◽  
pp. 00018
Author(s):  
Murlidhar Gupta ◽  
Jacques Monnier ◽  
Eric Turriff ◽  
Mark Boyd

Biomass pyrolysis liquids (also known as bio-oil), are derived from renewable lignocellulosic biomass residues by fast pyrolysis process. These second-generation oxygenated hydrocarbon resources have the potential to partially substitute for petroleum-derived feedstocks and thus enhance the economic and environmental sustainability of our natural resources. However, in contrast to petroleum fuels, biomass-derived pyrolysis liquids contain a large amount of oxygen, usually 40-50% wt% (wet basis). This undesirable high oxygen content in pyrolysis liquids is considered as the primary reason for its high polarity, high acidity, lower stability, lower energy density and very low miscibility with conventional crude refining feedstocks. There are two major pathways for upgrading the pyrolysis liquids. While hydrodeoxygenation route is one of the most explored options, it requires production and supply of large amounts of expensive hydrogen at high pressures, mandating large and centralized upgrading plants, and thus large capital investment. In this paper, we discuss an alternative method of pyrolysis liquid upgrading, using cheap and affordable hydrogen donor additives and catalysts to promote partial deoxygenation at near atmospheric pressure. This approach is preferably to be used as a pre-treatment and stabilizing method for pyrolysis liquids in the close vicinity of remote biomass pyrolysis plants. The pre-treated oil, then can be shipped for further hydrocracking process in a centralized co-processing facility. Preliminary results from the initial proof of concept experiments involving a 200 g/h gas-phase continuous fast catalytic cracking system with continuous coke removal to enhance deoxygenation performance are presented. These results indicate positive impact of catalyst bed on quality and yield of the upgraded bio-oil product in terms of pH, viscosity, degree of deoxygenation, oil yield and concentration of hydrogen in the off gases.


Author(s):  
Wen-long Cheng ◽  
Kun Xie ◽  
Wen-jing Shi

Bio-oil, produced from biomass feedstock like rice hull, straw, wood flour and other biomass wastes by fast pyrolysis where the biomass feedstock is heated and pyrolized with a rapid rate and the pyrolysis gases produced are condensed rapidly, is an interesting potential alternative fuel oil. Cooling rate of the biomass pyrolysis gas is an important factor effecting the production of bio-oil. In order to speed up the cooling rate, the high temperature biomass pyrolysis gas is cooled and condensed by spray droplets of produced bio-oil with low temperature in this paper. It was assumed that the chemical reactions among the components of pyrolysis gas can be ignored, a theoretical model based on the classic film model and the Maxwell-Stefan equation was presented to simulate the heat and mass transfer characteristics of the spray condensation of biomass pyrolysis gas. The effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ration of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets were analyzed by the model.


2014 ◽  
Vol 953-954 ◽  
pp. 325-329
Author(s):  
Jin Wei Jia ◽  
Di Yang ◽  
He Long Hui ◽  
Xing Min Fu ◽  
Lu Liu ◽  
...  

The aims of this work were to investigate the influence of feedstock properties of different part of cassava residues (cassava rhizome (CR), cassava stalk (CS) and cassava leaf (CL)) and operating temperatures on the pyrolysis characteristics and the kinetic parameters. Pyrolysis experiments of three selected biomass feedstock were conducted using a fixed-bed reactor. It was shown that the bio-oil yield of cassava stalk reached the maxima at 600°C, and the char yield reduced with the temperature, whereas the gas yield increased with temperature. The cassava rhizome presented higher thermochemical reactivity than the other samples. The activation energy of cassava stalks was 37.57 kJ / mol and that of cassava rhizome (39.42 kJ / mol) increased slightly. The activation energy of cassava leaf (22.85 kJ / mol) was lowest of the three samples.


2020 ◽  
Vol 181 ◽  
pp. 01002
Author(s):  
Punchaluck Sirinwaranon ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Cassava rhizome (CR) was torrefied to provide superior solid fuel quality for further gasification process. The torrefaction was carried out in the absence of oxygen at 220, 240, 260, and 280°C with a fixed residence time. Solid fuel after torrefaction has a higher calorific value from that of reduced volatile matters. The optimum energy yield of torrefied CR is 88.16% at 260°C. The heating value of 20.86 MJ/kg for a torrefied product can be achieved compared to 15.37 MJ/kg for untreated CR. The subsequent gasification of torrefied CR at temperature of 800°C yielded the highest gas product of 65 wt.%. The carbon and hydrogen conversions into CO and H2 were 14.28% and 29.95%, respectively. Synthesis gas (syngas) from the conversion maintained the H2/CO ratio of around 2–2.50, which is suitable for the Fischer–Tropsch process or can be used as the feedstock for petrochemical industry.


2019 ◽  
Vol 3 (1) ◽  
pp. 60-78
Author(s):  
Fitriyah Fitriyah ◽  
Syarif Hidayat ◽  
Muhammad S. Abu Bakar ◽  
Neeranuch Phusunti

Bahan bakar fosil sumber energi memiliki keterbatasan dan tidak terbarukan, penggunaan bahan bakar fosil secara terus menerus mengakibatkan krisis energy dan lingkungan. Rumput liar pada saat ini memiliki potensi untuk dikembangkan sebagai generasi kedua biomasa. Hal ini memiliki keuntungan seperti tumbuh dengan cepat, mudah tumbuh, perawatan yang minimal, dapat tumbuh pada lahan kritis dan tersedia dalam jumlah yang banyak. Dalam upaya mengembangkan generasi kedua biomasa, penelitian ini secara sistematis memberikan perspektif ekologi dan teknologi proses dalam mengembangkan bioenergi dari alang – alang di Provinsi Banten. Pada penelitian ini karakterisasi alang – alang dilakukan untuk menentukan sifat – sifat dan potensi bioenergy. Sedangkan fixed bed pirolisis dilakukan untuk mengidentifikasi potensi produksi bio-oil dari proses pirolisis. Sementara analisis karakterisasi bio-oil dilakukan untuk melihat potensi chemical building block sebagai sumber energi. Analisis sifat kimia dan fisika alang – alang dilakukan melalui thermogravimetric analysis, proximate analysis, elemental analysis, compositional analysis, calorific value. Sedangkan analisis potensi bio-oil di lakukan melalui Gas Chromatography–Mass Spectrometry (GC-MS). Dari hasil karakterisasi mengindikasikan bahwa alang – alang memiliki nilai kalori 18,05 MJ/kg, dengan ash konten yang rendah, dan tinggi kandungan volatile. Analisis dengan GC/MS menunjukan komponen utama dalam bio-oil dikelompokan ke dalam furan, ketone, phenol dan anhydrosugar yang merupakan platform yang dapat dikonversi menjadi sumber energi. Fixed bed pyrolysis atau fixed bed pirolisis alang – alang menunjukan, bahwa yield bio-oil meningkat sebagaimana peningkatan temperatur dan puncaknya pada suhu 500 0C dengan persentase 37,91%. Kata Kunci: Alang - alang, Pirolisis, GC/MS, Thermogravimetric analysis, Bioenergi   ABSTRACT Fossil fuel as a source of energy have limitation and are non-renewable. Continuous utilisation of fossil fuels as energy source can lead to energy crisis and environmental impact. Perennials grasses (alang – alang) are currently being developed as a suitable second-generation biofuel feedstock. It has advantages such as rapid growth rate, easy to grow, minimal maintenance and utilise marginal land without competing with food supply. Taking into account of the various challenges attributed to the transformation of second-generation biomass for energy production, this work systematically looks at the ecological perspective and the availability for bioenergy production from alang – alang in Banten Province. Biomass characterisation is carried out to determine the properties and bioenergy potential. Fixed bed pyrolysis study was conducted to predict the potential production of bio-oil from the pyrolysis process. GC/MS study is conducted to identify the potential building blocks of value-added chemicals from alang – alang. The physicochemical properties of feedstock was thoroughly evaluated using thermogravimetric analysis, proximate analysis, elemental analysis, compositional analysis, calorific value. The analysis of the potential of bio-oil was carried out through GC / MS. Characterisation results indicate that alang - alang has a calorific value of 18.39 MJ/kg, with low ash content and high percentage of volatile matter. Analysis from Gas Chromatography–Mass Spectrometry (GC-MS) showed that majority of the chemical groups in the bio-oil contained furan, ketone, phenol and anhydro-sugars. Phenolic and furanic were found as major compounds in bio oil. Phenolic, furanic, ketonic and anhydrosugars are promising renewable platform compounds derived from pyrolysis of alang – alang. The compounds can be further converted to chemicals or fuels. The fixed-bed pyrolysis of alang - alang showed that the yield of bio-oil increases as the temperature increases and peaks at 500°C with 38.79%. Keywords: Alang - alang, Pyrolysis, GC/MS, Thermogravimetric analysis, Bioenergy


Sign in / Sign up

Export Citation Format

Share Document