scholarly journals Screening Life Cycle Assessment of Tall Oil-Based Polyols Suitable for Rigid Polyurethane Foams

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5249 ◽  
Author(s):  
Anda Fridrihsone ◽  
Arnis Abolins ◽  
Mikelis Kirpluks

A screening Life Cycle Assessment (LCA) of tall oil-based bio-polyols suitable for rigid polyurethane (PU) foams has been carried out. The goal was to identify the hot-spots and data gaps. The system under investigation is three different tall oil fatty acids (TOFA)-based bio-polyol synthesis with a cradle-to-gate approach, from the production of raw materials to the synthesis of TOFA based bio-polyols at a pilot-scale reactor. The synthesis steps that give the most significant environmental footprint hot-spots were identified. The results showed the bio-based feedstock was the main environmental hot-spot in the bio-polyol production process. Future research directions have been highlighted.

2021 ◽  
Vol 13 (9) ◽  
pp. 4856
Author(s):  
Xuejie Deng ◽  
Yu Li ◽  
Hao Liu ◽  
Yile Zhao ◽  
Yinchao Yang ◽  
...  

Microbial induced carbonate precipitation (MICP) is a new geotechnical engineering technology used to strengthen soils and other materials. Although it is considered to be environmentally friendly, there is a lack of quantitative data and objective evaluation to support conclusions about its environmental impact. In this paper, the energy consumption and carbon emissions of MICP technology are quantitatively analyzed by using the life cycle assessment (LCA) method. The environmental effects of MICP technology are evaluated from the perspectives of resource consumption and environmental impact. The results show that for each tonne of calcium carbonate produced by MICP technology, 1.8 t standard coal is consumed and 3.4 t CO2 is produced, among which 80.4% of the carbon emissions and 96% of the energy consumption come from raw materials. Comparing using MICP with cement, lime, and sintered brick, the current MICP application process consumes less non-renewable resources but has a greater environmental impact. The major environmental impact that MICP has is the production of smoke and ash, with secondary impacts being global warming, photochemical ozone creation, acidification, and eutrophication. In five potential application scenarios of MICP, including concrete, sintered brick, lime mortar, mine cemented backfill, and foundation reinforcement, the carbon emissions of MICP are 3 to 7 times greater than the emissions of traditional technologies. The energy consumption is 15 to 23 times. Based on the energy consumption and carbon emissions characteristics of MICP technology at the current condition, suggestions are given for the future research of MICP.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


2021 ◽  
Vol 108 ◽  
pp. 103309
Author(s):  
Tatiane Tobias da Cruz ◽  
José A. Perrella Balestieri ◽  
João M. de Toledo Silva ◽  
Mateus R.N. Vilanova ◽  
Otávio J. Oliveira ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3820
Author(s):  
Mélanie Douziech ◽  
Lorenzo Tosti ◽  
Nicola Ferrara ◽  
Maria Laura Parisi ◽  
Paula Pérez-López ◽  
...  

Heat production from a geothermal energy source is gaining increasing attention due to its potential contribution to the decarbonization of the European energy sector. Obtaining representative results of the environmental performances of geothermal systems and comparing them with other renewables is of utmost importance in order to ensure an effective energy transition as targeted by Europe. This work presents the outputs of a Life Cycle Assessment (LCA) performed on the Rittershoffen geothermal heat plant applying guidelines that were developed within the H2020 GEOENVI project. The production of 1 kWhth from the Rittershoffen heat plant was compared to the heat produced from natural gas in Europe. Geothermal heat production performed better than the average heat production in climate change and resource use, fossil categories. The LCA identified the electricity consumption during the operation and maintenance phase as a hot spot for several impact categories. A prospective scenario analysis was therefore performed to assess the evolution of the environmental performances of the Rittershoffen heat plant associated with the future French electricity mixes. The increase of renewable energy shares in the future French electricity mix caused the impact on specific categories (e.g., land use and mineral and metals resource depletion) to grow over the years. However, an overall reduction of the environmental impacts of the Rittershoffen heat plant was observed.


Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


ACS Omega ◽  
2019 ◽  
Vol 4 (9) ◽  
pp. 14114-14123 ◽  
Author(s):  
Alessandro Manzardo ◽  
Alessandro Marson ◽  
Martina Roso ◽  
Carlo Boaretti ◽  
Michele Modesti ◽  
...  

2015 ◽  
Vol 1 (3) ◽  
pp. 195-214 ◽  
Author(s):  
M. Roffeis ◽  
B. Muys ◽  
J. Almeida ◽  
E. Mathijs ◽  
W.M.J. Achten ◽  
...  

The largest portion of a product’s environmental impacts and costs of manufacturing and use results from decisions taken in the conceptual design phase long before its market entry. To foster sustainable production patterns, applying life cycle assessment in the early product development stage is gaining importance. Following recent scientific studies on using dipteran fly species for waste management, this paper presents an assessment of two insect-based manure treatment systems. Considering the necessity of manure treatment in regions with concentrated animal operations, reducing excess manure volumes with the means of insects presents a potentially convenient method to combine waste reduction and nutrient recovery. An analytical comparison of rearing houseflies on fresh and pre-treated pig manure is reported with reference to agricultural land occupation, water and fossil depletion potential. Based on ex-ante modelled industrial scale rearing systems, the driving factors of performance and environmentally sensitive aspects of the rearing process have been assessed. Expressed per kg manure dry matter reduction, the estimated agricultural land occupation varied between 1.4 and 2.7 m2yr, fossil depletion potential ranged from 1.9 to 3.4 kgoil eq and the obtained water depletion potential was calculated from 36.4 to 65.6 m3. System improvement potential was identified for heating related energy usage and water consumption. The geographical context and the utility of the co-products, i.e. residue substrates and insect products, were determined as influential variables to the application potential of this novel manure treatment concept. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such a system and provide guidance for future research and development activities.


2012 ◽  
Vol 72 ◽  
pp. 205-212 ◽  
Author(s):  
Irene Rodríguez-Meizoso ◽  
María Castro-Puyana ◽  
Pål Börjesson ◽  
Jose A. Mendiola ◽  
Charlotta Turner ◽  
...  

Author(s):  
U. Desideri ◽  
S. Proietti ◽  
F. Zepparelli ◽  
P. Sdringola ◽  
E. Cenci

In the last twenty years, the exploitation of non-renewable resources and the effects of their applications on environment and human health were considered central topics in political and scientific debate on European and worldwide scale. This kind of resources have been used in different sectors, as energy systems, technological research, but also in private/public buildings and production of consumer goods, involving significantly domestic and ordinary life of every human being. Studies about the effect of this exploitation carried out discouraging results, in terms of climate changes and energy sustenance; this determined a progressive approach process to a new concept of development, able to couple the qualitative standard of modern life with the respect of planet and its inhabitants. Starting from this reflection, scientific community moved towards research on alternative resources and developed a new way to conceive planning process and technical innovations, in order to exploit renewable energies and recycled materials, promote energy savings and reduce environmental pollution. In this context the present paper aims at evaluating benefits relating to different solutions of thermal insulation in building envelope. In fact a high grade of insulation ensures better comfort conditions in inner spaces, reducing energy consumptions due to heating and cooling conditioning. The paper presents the results of a detailed Life Cycle Assessment (LCA) of the reflective foil ISOLIVING, conceived and produced by an Italian company. The Life Cycle Assessment methodology allows to consider all stages of the life cycle, from the extraction of raw materials to the product’s disposal, in an optics “from cradle to grave.” In particular, the study takes into account the production phase of the reflective foil ISOLIVING, the installation phase, the transport of all components to the production site and also the end of life scenario of the material. The possibility to collect many detailed information about the production phase adds value to the study. The analysis is carried out according to UNI EN ISO 14040 and UNI EN ISO 14044, which regulate the LCA procedure. The LCA modeling was performed using SimaPro software application. The results of the analysis allow to make an important comparison concerning the environmental performances, between the reflective foil ISOLIVING and other types of insulating materials.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


Sign in / Sign up

Export Citation Format

Share Document