scholarly journals Influence of the Length of a Catalyst-Coated Glow Plug on Exhaust Emissions

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6557
Author(s):  
Jerzy Merkisz ◽  
Jacek Pielecha ◽  
Monika Andrych-Zalewska

This paper discusses the application of an in-cylinder catalyst in reducing the exhaust emissions from a diesel engine. This is an additional method of exhaust gas aftertreatment; yet the placement of a catalyst in the combustion chamber (i.e., the closest location to the process of combustion) allows a reduction of the emissions ‘at source’ (the catalyst applied on the glow plugs). For the investigations, we used an engine dynamometer to reproduce the traffic conditions of a homologation test carried out on a chassis dynamometer. We carried out the investigations on a Euro 4 1.3 JTD MultiJet diesel engine. The selection of the research object was followed by an analysis of the number of engines used in the EU meeting individual emission standards. We present results (measurement of carbon monoxide, hydrocarbons, nitrogen oxides, particle number, and carbon dioxide) related to the assessment of the applicability of the in-cylinder catalyst for three types of glow plugs: standard, catalyst-covered, and a prototype plug with an elongated catalyst-covered heating part. Prototype catalytic glow plugs ensure a few percent reduction in the emission of carbon monoxide, hydrocarbons, carbon dioxide, and particle number. The use of such a solution (glow plug replacement) in most diesel engines (easy to retrofit) would improve the environmental performance of combustion engines. It is of particular importance that in-cylinder catalysts are most efficient during cold start and warm-up, which is often the case in urban driving.

2021 ◽  
Author(s):  
Monika Andrych-Zalewska ◽  
Jerzy Merkisz ◽  
Jacek Pielecha

The paper discusses the application of an in-cylinder catalyst allowing a reduction of the exhaust emissions from a diesel engine. Its placement in the combustion chamber, the area where the process of combustion takes place, allows reducing the emissions (carbon monoxide, hydrocarbons, particulate matter) ‘at source’. The paper presents the possibilities of boosting the efficiency of catalysts in diesel engines by extending the time of heating of a glow plug (the catalyst applied on the glow plug). The tests were performed for the following conditions: no heating (marked 0+0), glow plug heating for 60 s after engine start (marked 0+60), glow plug heating prior to engine start for 60 s and glow plug heating for 60 s after engine cold start (marked 60+60). An improvement in the efficiency of oxidation of the exhaust components was observed as the glow plug heating time increased.


Author(s):  
Seppo A. Niemi ◽  
Juha M. Tyrva¨inen ◽  
Mika J. Laure´n ◽  
Va¨ino¨ O. K. Laiho

In the near future, crude oil based fuels must little by little be replaced by biofuels both in the region of the European Union (EU) and in the United States. Bearing this in mind, a Finnish-made off-road diesel engine was tested with a biofuel-diesel fuel blend in the Internal Combustion Engine (ICE) Laboratory of Turku Polytechnic, Finland. The biofuel was cold-pressed mustard seed oil (MSO). The engine operation, performance and exhaust emissions were investigated using a blend of 30 mass-% MSO and 70 mass-% diesel fuel oil (DFO). The injection timing of the engine was retarded considerably in order to reduce NOx emissions drastically. The main target was then to find out, whether the blended oxygen containing MSO would speed up the combustion so that the particulate matter (PM) emissions would remain unchanged or even decrease despite the injection retardation. As secondary tasks of the study, the NOx readings of the CLD and FTIR analyzers were compared, and exhaust contents of unregulated compounds were determined. Retarding the injection timing resulted in a significant decrease of NOx emissions, but in an increase in smoke, as expected. At retarded timing, the NOx emissions remained almost unchanged, but the amount of smoke decreased when the engine was run with the fuel blend instead of DFO. At retarded timing at rated speed, the number of ultra-fine particles decreased, but the amount of large particles increased with DFO at full load. At 10% load, however, the particle number increased in the entire particle size range due to retardation. At both loads, the use of the fuel blend slightly reduced larger particles, whereas the number of small particles somewhat increased. At full load at an intermediate speed of 1500 rpm, the PM results were very similar to those obtained at rated speed. At 10% load with DFO, however, the injection retardation led to a higher number of larger particles, the smaller particles being at almost an unchanged level. With the fuel blend, the particle number was now higher within almost the whole particle diameter range than with DFO. Considerably higher NO2 contents were usually detected with FTIR than with CLD. The shape of the NOx result curves were rather similar independent of which one of the analyzers was used for measurements. The NOx contents were, however, generally some ten ppms higher with FTIR. The exhaust contents of unregulated compounds were usually low.


2021 ◽  
Vol 1 (1) ◽  
pp. 14-22
Author(s):  
S.A. Plotnikov ◽  
◽  
Sh.V. Buzikov ◽  
I.S. Kozlov ◽  
◽  
...  

The use of rapeseed oil (RO) in tractor engines and other agricultural machinery in its pure form or a mixture of RO with diesel fuel (DF) imposes a number of limitations associated with some dif-ference in physical and chemical properties. Therefore, the most promising is the use of mixed fuel (MF) consisting of DF and RO. The purpose of these studies is to determine the optimal composi-tion of the MF, consisting of DF and RM by optimizing the approximated dependences of the envi-ronmental indicators of a diesel engine. To solve this problem, bench tests of the operation of the D-245.5S diesel engine (4ChN 11.0 / 12.5) were carried out. The following determined environmental performance indicators of a diesel engine are selected: soot (С), nitrogen oxides (NOx), unburned hydrocarbons (CxHy), carbon dioxide (CO2) and carbon monoxide (CO). The studies were carried out on various compositions of MF, consisting of 80% DF and 20% RO, 55% DF and 45% RO, 20% DF and 80% RO by weight, respectively. As a result of the bench tests, two load characteris-tics were obtained, the one at a speed of n = 1400 min-1 corresponding to the value of the maximum torque, and the second at a speed of n = 1800 min-1 corresponding to the value of the rated power, as well as the external speed characteristic of the D-245.5S tractor diesel engine (4ChN 11.0 / 12.5). The analysis of the obtained experimental data revealed the dependence of environmental indicators on the rotational speed of the diesel engine crankshaft, the average effective pressure and the addi-tion of RO in MF by weight. Using the least squares method, the approximated mathematical de-pendences of the ecological indicators of a diesel engine are determined. The analysis of the ob-tained dependencies showed that: the increase in the crankshaft speed n, the proportion of RO in MF and a decrease in the average effective pressure pe, leads to a decrease in soot С to 4.0%, nitro-gen oxides NOx to 100.0 ppm, unburned hydrocarbons CxHy to 1.0 ppm, carbon dioxide, CO2 up to 2%, and an increase in carbon monoxide CO up to 0.16%. As a result of solving the obtained system of equations for the approximated dependences of environmental indicators, the optimal addition of RO to MF of up to 35% by weight was determined.


2020 ◽  
Vol 14 (1) ◽  
pp. 6285-6294
Author(s):  
R. Arias Gilart ◽  
M. R. B. Ungaro ◽  
C. E. A. Rodríguez ◽  
J. F. F. Hernández ◽  
M. C. Sofia ◽  
...  

In this research, different magnetic treatments were applied to diesel fuel using static magnetic fields of 0.36T of magnetic induction. The magnetic conditioners (MCs) were installed in different positions of the fuel lines in the engine and the magnetic treatment of the diesel was also carried out before introducing it into the engine tanks. The study was conducted using a four-stroke, two-cylinder, Lister Petter (LPWS2) engine with a compression ratio of 23.5:1 and a constant engine speed of 1500 rpm. The emissions of carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), nitrogen oxides and the temperature of the exhaust gases and the mass consumption of fuel were measured. The highest levels of reduction were achieved with the magnetic treatments that locate the MC directly in the engine's pipes. As the number of MC in the engine pipes increases, the emissions of polluting gases decrease. With the treatment that locates one MC in front of each injector, two MC at the entrance of the filter and two MC in the return of fuel were able to increase the O2 emissions by 6.9% and decrease the CO emissions in about 21.3% in the last load of the generator set. With this treatment a decrease in fuel consumption of 4.89% to 80% of engine load was obtained.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6569
Author(s):  
Monika Andrych-Zalewska ◽  
Zdzisław Chłopek ◽  
Jerzy Merkisz ◽  
Jacek Pielecha

The application of a catalyst on a surface inside a combustion chamber is known as a supplementary method of exhaust gas aftertreatment. The efficiency of this method in the reduction in exhaust emissions as well as its influence on other engine properties has been analyzed in multiple scientific works. Most often, these works present the results of investigations carried out on dynamometers under engine stationary conditions. There are no results of the catalyst investigations performed under dynamic states, particularly on-going real time analyses during engine operation. Therefore, the authors set out to explore the efficiency of the in-cylinder catalyst of a diesel engine under dynamic conditions simulating actual vehicle operation. A unique methodology was applied. The investigations were carried out in road conditions in a test simulating the New European Driving Cycle (NEDC) homologation test in compliance with the similarity criteria of the zero-dimensional characteristics of vehicle speed during the investigations and in the homologation test. For the research, the authors used portable exhaust emissions measurement equipment. A unique method of test results analysis was also applied (a continuous method in the time domain). As a result of the tests being repeated several times, it was observed that the application of an internal catalyst under different operating engine conditions repeatedly results in: an approx. 2% reduction in the emissions of carbon monoxide, hydrocarbons, and carbon dioxide; a similar increase in the emission of nitrogen oxides; and a significant (over 10%) reduction in the particle number. The obtained results substantiate the purpose of actions aiming at improving the efficiency of the internal catalyst.


2014 ◽  
Vol 18 (1) ◽  
pp. 259-268 ◽  
Author(s):  
S.R. Premkartikkumar ◽  
K. Annamalai ◽  
A.R. Pradeepkumar

Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.


2013 ◽  
Vol 390 ◽  
pp. 343-349 ◽  
Author(s):  
Jerzy Merkisz ◽  
Pawel Fuc ◽  
Piotr Lijewski ◽  
Andrzej Ziolkowski

The paper describes the influence of the start-stop system on the exhaust emissions and fuel consumption. The tests were performed for two vehicles. The first one was a vehicle designed specifically to operate in city conditions. It was fitted with a gasoline engine of the displacement of 0.9 dm3 and maximum power output of 63.7 kW. The other vehicle was an SUV (Sports Utility Vehicle) fitted with a diesel engine of the displacement of 3.0 dm3. The measurements of the exhaust emission were carried out on the same route under actual traffic conditions. For the tests a portable exhaust emissions analyzer from the PEMS group SEMTECH DS was used (PEMS Portable Emissions Measurement System).


2021 ◽  
Vol 11 (19) ◽  
pp. 9084
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The article presents the results of studies on the influence of the thermal state of vehicle combustion engines on pollutant emissions. This influence was analyzed based on data from Poland’s inventory of pollutant emissions for the years 1990–2017. The results show that during engine warm-up, carbon monoxide emission constitutes the largest share (up to 50%) in the national annual total emission. Volatile organic compounds are next in the ranking, whereas the share of nitrogen oxides is the lowest (less than 5%). Under the model traffic conditions, close to those in Poland’s cities in winter, simulation tests regarding additional pollutant emissions from passenger cars during engine warm-up were also carried out. As a result of the cold-start emissive behavior of internal combustion engines, emissions of carbon monoxide and volatile organic compounds showed a considerably greater impact on national pollutant emission, as compared to carbon dioxide, nitrogen oxides and particulate matter. This is particularly evident for the results of the inventory of pollutant emissions from road transport.


Reactions ◽  
2011 ◽  
Author(s):  
Peter Atkins

Burning, more formally combustion, denotes burning in oxygen and more commonly in air (which is 20 per cent oxygen). Combustion is a special case of a more general term, ‘oxidation’, which originally meant reaction with oxygen, not necessarily accompanied by a flame. The rusting of iron is also an oxidation, but we don’t normally think of it as a combustion because no flame is involved. Oxidation now has a much broader meaning than reaction with oxygen, as I shall unfold in Reaction 5. For now, I shall stick to combustion itself. To achieve combustion, we take a fuel, which might be the methane, CH4, 1, of natural gas or one of the heavier hydrocarbons, such as octane, C8H18, 2, that we use in internal combustion engines, mix it with air, and ignite it. The outcome of the complete combustion of any hydro-carbon is carbon dioxide and water but incomplete combustion can result in carbon monoxide and various fragments of the original hydrocarbon molecule. All combustions are ‘exothermic’, meaning that they release a lot of energy as heat into the surroundings. We use that energy for warmth or for driving machinery. Another example of an exothermic combustion is provided by the metal magnesium, which gives an intense white light as well as heat when it burns in air. A part of the vigour of this reaction is due to the fact that magnesium reacts not only with oxygen but also with nitrogen, the major component of air. You should be getting a glimpse of the broader significance of the term ‘oxidation’ in the sense that the reaction need not involve oxygen; in magnesium’s case, nitrogen can replace oxygen in the reaction. Magnesium foil was used in old-fashioned photographic flashes and in fireworks. The latter now mostly use finely powdered aluminium, which is much cheaper than magnesium and reacts in much the same way. In what follows you could easily replace aluminium with magnesium if you want to think fireworks. For the whole of the following discussion you need to be familiar with oxygen, O2, 3, a peculiar molecule in several respects.


2015 ◽  
Vol 2015 (0) ◽  
pp. _G0700401--_G0700401-
Author(s):  
Kazutoshi MORI ◽  
Jun KAWASE ◽  
Ryuichi SUZUKI ◽  
Koji SORIMACHI ◽  
Kunihisa EGUCHI

Sign in / Sign up

Export Citation Format

Share Document