scholarly journals Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4973
Author(s):  
Keerthi Kumar N. ◽  
N. R. Banapurmath ◽  
T. K. Chandrashekar ◽  
Jatadhara G. S. ◽  
Manzoore Elahi M. Soudagar ◽  
...  

Being an energy source of another origin, the compression ignition (CI) engine’s typical design parameters might not suit Simarouba oil methyl ester (SuOME). Present experimental investigation targets are determining the effects of engine design parameters, including fuel injection pressure and nozzle geometry, on the engine, concerning performance and emissions such as carbon monoxide (CO), unburnt hydrocarbon (HC), oxides of nitrogen (NOx), and smoke opacity, with SuOME as fuel. Comparisons of brake thermal efficiency (BTE) and different emissions from the engine tailpipe were performed for different fuel injection pressures and a number of injector holes and diameter of orifices were opened in the injector to find the optimum combination to run the engine with SuOME. It was observed that the combined effect of an increase in injection pressure of 240 bar from 205 bar, and increasing number of injector holes from three to six with reduced injector hole diameters from 0.2 to 0.3 mm, recorded higher brake thermal efficiency with reduced emission levels for the SuOME mode of operation compared to the baseline standard operation with SuOME. For 240 bar compared to 205 bar of injection pressure (IP) for SuOME, the BTE increased by 2.35% and smoke opacity reduced by 1.45%. For six-hole fuel injectors compared to three-hole injectors, the BTE increased by 3.19%, HC reduced by 9.5%, and CO reduced by 14.7%. At 240 bar IP, with the six-hole injector having a 0.2 mm hole diameter compared to the 0.3 mm hole diameter, the BTE increased by 5%, HC reduced by 5.26%, CO reduced by 25.61%, smoke reduced by 10%, while NOx increased marginally by 0.27%. Hence, the six-hole FI, 240 IP, 0.2 mm FI diameter holes are suitable for diesel engine operation fueled by Simarouba biodiesel.

2021 ◽  
Author(s):  
Jatoth Ramachander ◽  
Santhosh Kumar Gugulothu ◽  
Gadepalli Ravikiran Sastry ◽  
Burra Bhsker

Abstract This paper deals with analysis of the influence of fuel injection pressure with ternary fuel (diesel + Mahua methyl ester + Pentanol) on the emission, combustion and performance characteristics of a four stroke, single cylinder, common rail direct injection diesel engine working at a constant speed and varying operating scenarios. The usage of ternary fuel raised the NOx emission (12.46%) value and specific fuel consumption (SFC) with a decrease in the BTE (brake thermal efficiency) which attributes to its properties and combustion characteristics. The combustion process was affected by the physical properties of the blended fuel such as volatility and viscosity and this eventually affected the performance of the engine. The fuel injection pressure is varied from 20 MPa to 50 MPa so that ternary fuel can be properly utilized. The high injection pressure of 50 MPa has better combustion characteristics and higher brake thermal efficiency (4.39%) value than other injection pressure values. A better mixture is formed due to well atomized spray and as a result, the levels of CO (22.24%), HC (9.49%) and smoke (7.5%) falls with the increase in injection pressure.


2021 ◽  
pp. 0958305X2098347
Author(s):  
Manish Kumar ◽  
Varun Kumar Singh ◽  
Abhishek Sharma ◽  
Naushad Ahmad Ansari ◽  
Raghvendra Gautam ◽  
...  

Nowadays, owing to the reduction in petroleum supplies due to the growing oil demand, the search for alternate fuels has intensified. However, as alternate fuel choice grows, checking whether alternative fuels are suitable for use in engines has become time-consuming and expensive. Therefore, the usage of Linseed oil methyl ester (linseed biodiesel) in the common rail direct injection (CRDI) diesel engine was optimized for a smaller number of trials in this research. Response surface methodology (RSM) was employed for optimization. Input variables were chosen for LOME content in the blend, fuel injection pressure (FIP), exhaust gas recirculation (EGR) rates, and engine load while output parameters were selected for like indicated power (IP), indicated thermal efficiency (η(I)), indicated mean effective pressure (IMEP), hydrocarbon (HC), and NOx (Oxide of Nitrogen).The model layout employed in the analysis is focused on the matrix of the CCRD (central composite rotating design). The optimal input variables configuration is estimated at 5.45% LOME blend, 57.77 MPa FIP, 6.50% EGR, and 6.909 kg engine load leading to better efficiency together with reduced emissions. The optimized output of the engine at this input configurations are as IP 4.878 kW, IMEP 0.5886 MPa, indicated thermal efficiency 48.36%, HC 23.43 ppm vol., and NOx 533.15 ppm vol. Testing and optimum output response results are measured at acceptable input parameters and are considered to be within an acceptable error range. The findings of this analysis have shown that RSM is an appropriate technique for optimizing CRDI diesel engines.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Transport ◽  
2005 ◽  
Vol 20 (5) ◽  
pp. 186-194 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

During engine operation at 1 400, 1 800 and 2 200 min‐1 the brake specific fuel consumption has on an average been increased by 0,104 %, 0,134 % and 0,156 % for every 1 % point increase in RO inclusion into DF. The maximum thermal efficiency values remain within 0,37–0,39 intervals. The maximum NOx emission increases with the mass percent of oxygen in the fuel blend and for RO and its blends RO75 and RO50 are higher by 9,2 %, 20,7 % and 5,1 %, respectively. Emissions of NO2 increase with an increasing content of RO premixed into DF. When operating on pure RO and its blends RO75 and RO50 the maximum CO emission reduces by 40,5 % ‐52,9 % and 7,2 %‐15,0 %, respectively. The smoke opacity generated from RO and its blends is also by 27,1% ‐34,6 % and 41,7 % ‐51,0 % lower. Emissions of HC remain on a considerably low level ranging between 8 to 16 ppm whereas during engine operation on pure RO they approach to about a zero level. Emissions of CO2 for RO and fuel blend RO75 are slightly higher.


Microalgae was recognized as the sustainable energy feedstock for producing biofuels. Now bio-diesel produced from algal biomass is getting ready to address the energy crisis that the world would face tomorrow. This paper deals with the utilization of microalgae biodiesel at 30% blend, to investigate the influence of operating parameter such as injection pressure on the characteristics of a compression ignition engine. Microalgae crude oil was derived from chlorella vulgaries and it was converted into microalgae methyl ester (MME) using transesterification process. The desired test fuel was prepared by mixing of 30% MME with 70% pure diesel and designated as B30. The experiment was performed on a single four-stroke cylinder diesel engine powered with B30 at various fuel injection pressures 180 bar range, 200 bar and 220 bar range. The experimental findings showed that there was no important effect on BSFC from altered injection pressures, while BTE was increased at 200 bar by a maximum of 14.09 percent. At 200 bar injection pressure, exhaust emissions such as CO, CO2, UHC and smoke opacity were enhanced mostly, but NOX emissions were reduced, and increases in cylinder peak pressure were only discovered at 200 bar.


2018 ◽  
Vol 3 (2) ◽  
pp. 98-105
Author(s):  
Didit Sumardiyanto ◽  
Sri Endah Susilowati

AbstrakPenelitian ini dilakukan untuk mengetahui  pengaruh  pompa injeksi bahan bakar tekanan tinggi terhadap kinerja sebuah mesin pada mesin penggerak utama MV. ALAM JAYA II yang menggunakan mesin diesel YANMAR type M22-EN. Berdasarkan data-data yang diperoleh dilapangan, setelah dilakukan pembahasan bahwa tekanan pompa injeksi berpengaruh pada kinerja mesin diesel. Untuk tekanan pompa injeksi sebesar 820 kgf/cm2, kinerja yang dihasilkan mesin adalah : Daya Indikator 1204 kgf/cm2, Daya Efektif 1016 kgf/cm2, Efisiensi Thermal Efektif 32,0% dan konsumsi bahan bakar spesifik sebesar 192 g/hp.h. Sedangkan setelah dilakukan perbaikan pompa injeksi, tekanan pompa menjadi 1120 kgf/cm2, kinerja yang dihasilkan oleh mesin adalah : Daya efektif 1399 hp, Daya Efektif 1195 hp, Efisiensi Thermal Efektif : 37.32%, dan Konsumsi Bahan Bakar Spesifik sebesar 165.7 g/hp.h Dengan adanya perbaikan pompa injeksi sehingga dapat menaikkan tekanan injeksi dari 880 kgf/cm2 menjadi 1120 kgf/cm2, maka kinerja mesin dapat ditingkatkan Kata kunci: mesin diesel,pompa injeksi, kinerja mesin AbstractThis research was conducted to determine the effect of high pressure fuel injection pump on the performance of a machine on the MV main drive engine. ALAM JAYA II which uses the YANMAR type M22-EN diesel engine. Based on the data obtained in the field, after discussion that the injection pump pressure affects the performance of the diesel engine. For injection pump pressure of 820 kgf /cm2, the engine performance is: Indicator Power 1204 kgf /cm2, Effective Power of 1016 kgf /cm2, Effective Thermal Efficiency of 32.0% and specific fuel consumption of 192 g / hp.h. Whereas after the injection pump repairs, the pump pressure becomes 1120 kgf / cm2, the performance produced by the engine is: Effective 1399 hp, Effective 1195 hp, Effective Thermal Efficiency: 37.32%, and Specific Fuel Consumption of 165.7 g / hp. H With the improvement of the injection pump so that it can increase the injection pressure from 880 kgf / cm2 to 1120 kgf /cm2, the engine performance can be improvedKeywords: diesel engine, injection pump, engine performance


Sign in / Sign up

Export Citation Format

Share Document