scholarly journals Series Architecture on Hybrid Electric Vehicles: A Review

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7672
Author(s):  
Alessandro Benevieri ◽  
Lorenzo Carbone ◽  
Simone Cosso ◽  
Krishneel Kumar ◽  
Mario Marchesoni ◽  
...  

The use of series architecture nowadays is mainly on hybrid buses. In comparison with series-parallel and parallel architectures, which are usually exploited on medium-size cars, the series architecture allows achieving internal combustion engine higher efficiency. The downside of this architecture, due to a double energy conversion (i.e., mechanical energy converted in electrical energy and electrical energy converted again in mechanical energy), is that additional losses are introduced. For this reason, the parallel and the series/parallel architectures were considered more suitable for hybrid medium-size cars. Nevertheless, the use of new technologies can change this scenario. Regarding storage systems, supercapacitors achieved a significant energy density, and they guarantee much higher efficiency than battery storage. Moreover, the use of wide-bandgap components for power electronic converters, such as silicon carbide devices, assure lower losses. In this scenario, the series architecture can become competitive on medium-size cars. This paper shows a review of various studies performed on this topic.

Author(s):  
Madi Zholbaryssov ◽  
Azeem Sarwar

Penetration of electrified vehicles has increased steadily over the last decade due to unstable fuel prices, and the ability of such vehicle to offer lower cost per mile for transportation. At the same time, strict fuel emission standards continue to motivate the auto industry to invest resources on developing new technologies, which allow economically feasible electrification of vehicles and enable mass production. In electric vehicles, the electric drive system converts electrical energy into mechanical energy that powers the vehicle wheels. In this article, we present thermal model based fault detection and isolation methodology for power inverter insulated gate bipolar transistor (IGBT) modules, which play a key role in converting DC power from the battery into AC power that goes into the electric motor and drives the wheels through the transmission module. We do not propose any additional sensing capability, and make use of what is typically available in most of the production vehicles today across the industry. Results are presented from simulation studies that highlight the effectiveness of our proposed method.


2021 ◽  
Vol 13 (5) ◽  
pp. 2424
Author(s):  
Yunkoo Cho ◽  
Young Jae Han ◽  
Jumi Hwang ◽  
Jiwon Yu ◽  
Sangbaek Kim ◽  
...  

An electric motor is a device that changes electrical energy into mechanical energy for railway vehicles. When developing the electric motor, it used to be developed simply for structures or control methods of the motor itself without considering convergence with other devices or technologies. However, as the railway vehicles become more advanced, technology development through convergence with other devices or technologies is spreading. Therefore, based on patent data related to the electric motors applied to the railway vehicles, this research aims to carry out technical forecasting for establishing research and development (R and D) direction for new technologies by predicting vacant technologies from the point of view of technology convergence. In other words, we studied how to find the vacant technologies in a field of convergence technology for the electric motor of the railway vehicles by analyzing the patent data. More specifically, we search the patents data associated with the electric motor of the railway vehicle that contain multiple IPC codes, and use multiple IPC codes to determine the field of convergence technology. In addition, we extract keywords from the patents data related to each of the determined convergence technologies and define the vacant technologies by interpreting the field of convergence technology and the extracted keywords.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2021 ◽  
Vol 11 (11) ◽  
pp. 5001
Author(s):  
Robin Masser ◽  
Karl Heinz Hoffmann

Energy savings in the traffic sector are of considerable importance for economic and environmental considerations. Recuperation of mechanical energy in commercial vehicles can contribute to this goal. One promising technology rests on hydraulic systems, in particular for trucks which use such system also for other purposes such as lifting cargo or operating a crane. In this work the potential for energy savings is analyzed for commercial vehicles with tipper bodies, as these already have a hydraulic onboard system. The recuperation system is modeled based on endoreversible thermodynamics, thus providing a framework in which realistic driving data can be incorporated. We further used dissipative engine setups for modeling both the hydraulic and combustion engine of the hybrid drive train in order to include realistic efficiency maps. As a result, reduction in fuel consumption of up to 26% as compared to a simple baseline recuperation strategy can be achieved with an optimized recuperation control.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chongshan Yin ◽  
Qicheng Liu ◽  
Qing Liu

Abstract How to convert heat energy into other forms of usable energy more efficiently is always crucial for our human society. In traditional heat engines, such as the steam engine and the internal combustion engine, high-grade heat energy can be easily converted into mechanical energy, while a large amount of low-grade heat energy is usually wasted owing to its disadvantage in the temperature level. In this work, for the first time, the generation of mechanical energy from both high- and low-temperature steam is implemented by a hydrophilic polymer membrane. When exposed to water vapor with a temperature ranging from 50 to 100 °C, the membrane repeats rolling from one side to another. In nature, this continuously rolling of membrane is powered by the steam, like a miniaturized “steam engine”. The differential concentration of water vapor (steam) on the two sides of the membrane generates the asymmetric swelling, the curve, and the rolling of the membrane. In particular, results suggest that this membrane based “steam engine” can be powered by the steam with a relatively very low temperature of 50 °C, which indicates a new approach to make use of both the high- and low-temperature heat energy.


2000 ◽  
Author(s):  
Emiliano Cioffarelli ◽  
Enrico Sciubba

Abstract A hybrid propulsion system of new conception for medium-size passenger cars is described and its preliminary design developed. The system consists of a turbogas set operating at fixed rpm, and a battery-operated electric motor that constitutes the actual “propulsor”. The battery pack is charged by the thermal engine which works in an electronically controlled on/off mode. Though the idea is not entirely new (there are some concept cars with similar characteristics), the present study has important new aspects, in that it bases the sizing of the thermal engine on the foreseen “worst case” vehicle mission (derived from available data on mileage and consumption derived from road tests and standard EEC driving mission cycles) that they can in fact be accomplished, and then proceeds to develop a control strategy that enables the vehicle to perform at its near–peak efficiency over a wide range of possible missions. To increase the driveability of the car, a variable-inlet vane system is provided for the gas turbine. After developing the mission concept, and showing via a thorough set of energy balances (integrated over various mission profiles), a preliminary sizing of the turbogas set is performed. The results of this first part of the development program show that the concept is indeed feasible, and that it has important advantages over both more traditional (Hybrid Vehicles powered by an Internal Combustion Engine) and novel (All-Electric Vehicle) propulsion systems.


2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2019 ◽  
Vol 17 (1) ◽  
pp. 95
Author(s):  
Jumadi Tangko ◽  
Remigius Tandioga ◽  
Ismail Djufri ◽  
Riza Haardiyanti

Flywheel is a rotating mechanical device, which is generally used on four-wheeled vehicles. Flywheel has a moment of inertia that is able to withstand changes in rotational speed. The energy in flywheel is mechanical energy. This mechanical energy will be converted by generators into electrical energy. At the flywheel-based power plant, tests are carried out in the form of rotation, the generator power of the generator under no load or load conditions, and the time needed for this generator to survive. The results showed that the ability of the flywheel-based power plant in the condition without a backup supply to the motor in the condition of a generator without a load is able to generate power of 860.1 W for 22 seconds, while in a load-bearing generator capable of generating electricity by 708.75 W for 18 seconds 


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Syarif Moh Rofiq Al- Ghony ◽  
Subuh Isnur Haryudo ◽  
Jati Widyo Leksono

The electric motor is a device that serves to transform electrical energy into mechanical energy of motion. In this case the designed control system motor 3 phase by Smartphones through bluetooth network to find out the effective range of extremity. The methods used in the form of data capture of measurement effective range the furthest that can be reached by bluetooth to activate relay SPDT and motor 3 phase. Results of testing the most effective distance of the otomasisasi control system of motor 3 phase maximum as far as 15 meters with a time of pause 0.5 seconds.


Sign in / Sign up

Export Citation Format

Share Document