scholarly journals Radial Growth Rate Responses of Western Juniper (Juniperus occidentalis Hook.) to Atmospheric and Climatic Changes: A Longitudinal Study from Central Oregon, USA

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1127
Author(s):  
Peter T. Soulé ◽  
Paul A. Knapp

Research Highlights: In this longitudinal study, we explore the impacts of changing atmospheric composition and increasing aridity on the radial growth rates of western juniper (WJ; Juniperus occidentalis Hook). Since we sampled from study locations with minimal human agency, we can partially control for confounding influences on radial growth (e.g., grazing and logging) and better isolate the relationships between radial growth and climatic conditions. Background and Objectives: Our primary objective is to determine if carbon dioxide (CO2) enrichment continues to be a primary driving force for a tree species positively affected by increasing CO2 levels circa the late 1990s. Materials and Methods: We collected data from mature WJ trees on four minimally disturbed study sites in central Oregon and compared standardized radial growth rates to climatic conditions from 1905–2017 using correlation, moving-interval correlation, and regression techniques. Results: We found the primary climate driver of radial growth for WJ is antecedent moisture over a period of several months prior to and including the current growing season. Further, the moving-interval correlations revealed that these relationships are highly stable through time. Despite a trend toward increasing aridity manifested through significant increases in maximum temperatures during the summer growing season, WJ radial growth post-1960 exceeds growth pre-1960, especially during drought years. Our results support prior conclusions that increasing atmospheric CO2 increases water-use efficiency for this semiarid species, which allows the trees to continue to grow during climatic periods negatively associated with radial growth. Conclusions: Recent studies have shown that semiarid ecosystems are important for understanding global variations in carbon uptake from the atmosphere. As WJ woodlands cover an extensive region in western North America and have undergone rapid expansion during the 20th and 21st centuries, they may become an increasingly important carbon sink.

Author(s):  
Valery P. Ivanov ◽  
◽  
Sergey I. Marchenko ◽  
Dmitry I. Nartov ◽  
Leonid P. Balukhta

Predicting tree growth processes is important due to the exceptional ecosystem role of forests, which carry out global climate regulation by sequestrating carbon, conserving drinking water, and providing habitat for living organisms. Trees are known to respond to any fluctuations in the environment. The research purpose is to identify weather and climatic factors that significantly affect the inhibition of growth of Scots pine (Pinus sylvestris L.) in conditions of constant moisture deficit. The studies were carried out in the eastern part of the Bryansk region within the territory the Bryansk administrative district, in the educational and experimental forestry of the Bryansk State Engineering and Technological University and the Styazhnovskoye forest district. Methods of dendrochronology were used to assess the response of 93 pine trees to fluctuations in the external environment by changing the width of annual rings (available anatomical feature of a tree) using indices of radial growth. An original approach was proposed to analyze the reasons for a sharp decline in the annual radial growth under the influence of temperature and precipitation. The years with abnormally low increments (1963, 1972, 1985, 2002 and 2010) were identified against the background of the weather-climatic situation for 5 years before and after the fall in growth. Similar dynamics of absolute values of radial increments and their indices was established, which is caused by fluctuations of natural factors, manifestation of hereditary traits, etc. Significant differences were revealed between the growth rates at average multiyear values of January, May and August air temperatures with growth rates in the years of abnormally low radial growth, which are observed in pine against the background of colder January and warmer May and August of the current year, as well as under the condition of warmer January of the previous year. At the same time, no significant role of precipitation was detected. The obtained data, expanding the idea of the features of growth processes and formation of annual increments in diameter of Scots pine in the conditions of changing climate at the turn of the 20th–21st centuries, allowed us to suggest a possible manifestation of physiological features of the species, the homeostasis optimum zone of which is located in the conditions of colder boreal climate. This information expands our understanding of the features of growth processes and formation of annual increments in diameter of Scots pine in changing climatic conditions.


2021 ◽  
Vol 3 ◽  
pp. 80-98
Author(s):  
I.L. Vakhnina ◽  
◽  
E.V. Noskova ◽  
◽  

Climatic characteristics of southeastern Transbaikalia from May to September (the growing season), that determine the accumulation of plant biomass and, hence, agrometeorological characteristics of the territory, are analyzed. The study showed that from 1959 to 2018, there was a significant increase in air temperature values on average for the year and for the growing season. According to the values of precipitation anomalies for the last completed dry phase of the cycle (1999–2011), their increase in comparison with the previous one (1963–1982) is noted. From 2012 till now, a phase of increased moisture has been recorded. The tree-ring chronologies constructed from trees growing in southeastern Transbaikalia can be used to reconstruct the parameters of heat and moisture supply of the territory and to analyze climatic changes over a period significantly exceeding the series of meteorological observations (up to 500 years). Keywords: air temperature, precipitation, drought and moisture indices, dendrochronology, radial growth


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 627
Author(s):  
Ondřej Nezval ◽  
Jan Krejza ◽  
Michal Bellan ◽  
Jan Světlík

Norway spruce is one of the most economically important coniferous species in Europe, but it has faced high mortality rates in the last few decades due to the increasing frequency of extreme weather events. Primary and secondary growth development may be affected by these non-optimal conditions. In this study, we aimed to analyze the timing, possible asynchrony and time-lag between the growth processes of Norway spruce. We used a novel methodological approach of primary (based on phenocamera picture evaluation) and secondary (dendrometers) growth detection. The combination of these novel approaches allowed us to compare these growth process in high temporal resolution. Measurements were performed in two experimental plots with contrasting climatic conditions (middle and higher elevations) in the years 2016–2019, during the presence of extreme climatic conditions. We demonstrated a significant elongation of the growing season, with a more pronounced effect at higher elevation. Compared to the long-term mean, we observed an additional 50 days with a temperature above 15 °C at the higher elevation plot. There were no found patterns in the time-shift of both growth processes between plots. On the other hand we observed asynchrony of radial growth and meristems growth. Radial growth began earlier than the phenology of apical meristems growth. The onset, end and duration of meristem growth differed between studied plots and years as well. The onset of radial growth did not follow the gradient of microclimatic parameters; however, the differences in climatic conditions between plots did cause a shift in the onset of meristem growth. The process of the radial growth was twice as long as for apical meristem development. On average, radial growth requires 71 days more than meristem phenology to reach full process completion. Our data confirmed that these growth processes are strongly affected by external weather conditions and the duration of the growing season. More advanced and detailed monitoring of these processes can provide more accurate data of the health status of trees in the forest.


Author(s):  
A N. Kabanov ◽  
◽  
S.A. Kabanova ◽  

Dendrochronological analysis was carried out in forest cultures of Pinus sylvestris of different ages growing in the green zone of Nur-Sultan city. It was found that the value of the annual radial growth is subject to a cycle with a period of 10-11 years. This is due to climatic conditions, in particular, with periods of solar insolation, which is confirmed by researches of other authors.


Author(s):  
N.V. Sergeev ◽  
◽  
A.Yu. Pivkin

The experience of cultivation of soybeans in SC "Agricultural machinery" of the Kaluga region on an area of 190 hectares shows that the soybean variety Alaska is sufficiently adapted to the soil and climatic conditions of this region, provides a high seed yield (up to 32 c / ha) and a high yield (up to 1344 kg / ha) relatively inexpensive protein. However, this variety has a long growing season (95-105 days) and therefore desiccation of crops is required for harvesting for seeds.


2013 ◽  
Vol 36 (9) ◽  
pp. 956-964 ◽  
Author(s):  
Man-Yu DONG ◽  
Yuan JIANG ◽  
Hao-Chun YANG ◽  
Ming-Chang WANG ◽  
Wen-Tao ZHANG ◽  
...  
Keyword(s):  

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.


1978 ◽  
Vol 14 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. L. Monteith

SUMMARYFigures for maximum crop growth rates, reviewed by Gifford (1974), suggest that the productivity of C3 and C4 species is almost indistinguishable. However, close inspection of these figures at source and correspondence with several authors revealed a number of errors. When all unreliable figures were discarded, the maximum growth rate for C3 stands fell in the range 34–39 g m−2 d−1 compared with 50–54 g m−2 d−1 for C4 stands. Maximum growth rates averaged over the whole growing season showed a similar difference: 13 g m−2 d−1 for C3 and 22 g m−2 d−1 for C4. These figures correspond to photosynthetic efficiencies of approximately 1·4 and 2·0%.


Sign in / Sign up

Export Citation Format

Share Document