scholarly journals Differential Metabolite Accumulation in Different Tissues of Gleditsia sinensis under Water Stress and Rehydration Conditions

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 542
Author(s):  
Jia Liu ◽  
Rui Kang ◽  
Yang Liu ◽  
Ke-Xin Wu ◽  
Xue Yan ◽  
...  

Gleditsia sinensis Lam. is a woody species that can tolerate various drought conditions and has been widely used in all aspects of life, including medicine, food, cleaning products, and landscaping. However, few reports have focused on the regulatory mechanism of the drought response in G. sinensis. To understand the metabolic basis of the Gleditsia sinensis drought response, different tissues were subjected to a rehydration/dehydration treatment and subsequently analyzed using untargeted and targeted metabolomics profiling depending on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass (LC-MS) analytical platforms, respectively. Eight sugars, twelve amino acids, and twenty phenolic compounds were characterized. Metabolites showing a significant increase or decrease under drought stress were considered to be the key metabolites of interest for a better understanding of the drought tolerance mechanisms. The GC-MS-identified compounds were shown to undergo tissue-specific regulation in response to drought stress. Moreover, the C6C3C6 and C6C3 structures were identified by LC-MS as phenolic metabolites, which revealed their drought-response association. Significant physiological parameters were measured, including overall plant development, and the results showed that antioxidant systems could not be completely restored, but photosynthetic parameters could be recovered. The results of this research provide insight into biochemical component information mechanism of drought resistance in G. sinensis.

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Yao ◽  
Jin Zhang ◽  
Meng Xie ◽  
Guoliang Yuan ◽  
Timothy J. Tschaplinski ◽  
...  

Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Leonard Bonilha Piveta ◽  
Nilda Roma-Burgos ◽  
José Alberto Noldin ◽  
Vívian Ebeling Viana ◽  
Claudia de Oliveira ◽  
...  

Rice is the staple food for about half of the world population. Rice grain yield and quality are affected by climatic changes. Arguably, rice cultivars’ genetic diversity is diminished from decades of breeding using narrow germplasm, requiring introgressions from other Oryza species, weedy or wild. Weedy rice has high genetic diversity, which is an essential resource for rice crop improvement. Here, we analyzed the phenotypic, physiological, and molecular profiles of two rice cultivars (IRGA 424 and SCS119 Rubi) and five weedy rice (WR), from five different Brazilian regions, in response to heat and drought stress. Drought and heat stress affected the phenotype and photosynthetic parameters in different ways in rice and WR genotypes. A WR from Northern Brazil yielded better under heat stress than the non-stressed check. Drought stress upregulated HSF7A while heat stress upregulated HSF2a. HSP74.8, HSP80.2, and HSP24.1 were upregulated in both conditions. Based on all evaluated traits, we hypothesized that in drought conditions increasing HSFA7 expression is related to tiller number and that increase WUE (water use efficiency) and HSFA2a expression are associated with yield. In heat conditions, Gs (stomatal conductance) and E’s increases may be related to plant height; tiller number is inversely associated with HSPs expression, and chlorophyll content and Ci (intercellular CO2 concentration) may be related to yield. Based on morphology, physiology, and gene regulation in heat and drought stress, we can discriminate genotypes that perform well under these stress conditions and utilize such genotypes as a source of genetic diversity for rice breeding.


2021 ◽  
Vol 22 (10) ◽  
pp. 5064
Author(s):  
Qinghua Chen ◽  
Linghui Guo ◽  
Yanwen Yuan ◽  
Shuangling Hu ◽  
Fei Guo ◽  
...  

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


2012 ◽  
Vol 39 (5) ◽  
pp. 402 ◽  
Author(s):  
Veeresh R. P. Gowda ◽  
Amelia Henry ◽  
Vincent Vadez ◽  
H. E. Shashidhar ◽  
Rachid Serraj

In addition to characterising root architecture, evaluating root water uptake ability is important for understanding drought response. A series of three lysimeter studies were conducted using the OryzaSNP panel, which consists of 20 diverse rice (Oryza sativa L.) genotypes. Large genotypic differences in drought response were observed in this genotype panel in terms of plant growth and water uptake. Total water uptake and daily water uptake rates in the drought-stress treatment were correlated with root length density, especially at depths below 30 cm. Patterns of water uptake among genotypes remained consistent throughout the stress treatments: genotypes that initially extracted more water were the same genotypes that extracted more water at the end of the study. These results suggest that response to drought by deep root growth, rather than a conservative soil water pattern, seems to be important for lowland rice. Genotypes in the O. sativa type aus group showed some of the greatest water uptake and root growth values. Since the OryzaSNP panel has been genotyped in detail with SNP markers, we expect that these results will be useful for understanding the genetics of rice root growth and function for water uptake in response to drought.


2021 ◽  
Author(s):  
Ricardo GIL ◽  
Dhikra ZAYOUD ◽  
Zeineb OUERGHI ◽  
Monica BOSCAIU ◽  
Oscar VICENTE ◽  
...  

Abstract Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought. In the present study, we have compared the physiological responses to drought of two Retama raetam (retama) subspecies from Tunisia, one of them living under the desert climate (subsp. raetam) and the other one growing on the coast (subsp. bovei). Methods To physiologically characterize the two R. raetam subspecies, and to elucidate their main mechanisms underlying their tolerance to drought stress, parameters related to seed germination, growth, photosynthesis (net photosynthetic rate, intracellular CO2 concentration, transpiration rate, stomatal conductance and water use efficiency), and accumulation of osmolytes (proline, glycine betaine and soluble sugars) were determined in four-month-old plants subjected to stress for up to one month. Important findings Drought significantly inhibited germination, growth, and all the evaluated photosynthetic parameters. Plants of R. raetam subsp. bovei were severely affected by drought after three weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls. At the same time, proline and glycine betaine significantly accumulated compared to the irrigated controls, but much less than in R. raetam subsp. raetam; in the latter subspecies, proline and glycine betaine increased to levels 24-fold and 6-fold higher, respectively, than in the corresponding controls. In summary, the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate, suggesting that tolerance in R. raetam is dependent on accumulation of osmolytes.


2020 ◽  
Vol 19 (3) ◽  
pp. 135-147
Author(s):  
Majid Golmohammadi ◽  
Omid Sofalian ◽  
Mehdi Taheri ◽  
Alireza Ghanbari ◽  
Valiollah Rasoli

The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.


2017 ◽  
Vol 1 ◽  
pp. 146
Author(s):  
Maruthaiya Arivalagan ◽  
Ramamurthy Somasundaram

Present investigation was focused on the response and regulation of the antioxidant defense system and photosynthetic pigment variation effect of two important fungicides or plant growth regulators Hexaconazole (HEX) and Tebuconazole (TBZ) on drought stressed tomato (Lycopersicon esculentum Mill.) plants. Drought stress was imposed for 30 Days after sowing (DAS) of tomato plant. The water was irrigated by 4 Days Interval Drought (DID) and the control plants were regularly irrigated. Triazole treatment like HEX at 15 mg L-1 and TBZ at 10 mg L-1 imposed on 30, 40 and 50 DAS. The plant samples were collected on 40, 50 and 60 DAS. The photosynthetic pigments like chlorophyll – a, chlorophyll – b and total chlorophyll were estimated. The drought stress reduced the photosynthetic pigments and increased the antioxidant contents and antioxidant enzymes activities. The combined drought stress with triazole treatments increased the photosynthetic pigments then reduced the ascorbic acid (AA), α-tocopherol, catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) activities, when compared to drought stressed plants. It can be concluded that the triazole treatment partially mitigated the adverse effects of drought stress in L. esculentum.


2007 ◽  
Vol 13 ◽  
pp. 189-189
Author(s):  
H. Hahn ◽  
O. Fiehn ◽  
M.A. Mcmanus ◽  
D.B. Scott

Metabolic profiling using gas-chromatography mass spectrometry was performed for endophyte-infected (E+) and corresponding endophyte-free (E-) clones of two ryegrass genotypes cultivated under sufficient water supply and drought stress. In total, 243 metabolites representing both known and unknown compounds were analysed for samples taken at the end of the drought stress period and after rewatering (n=10 replications per level of genotype, endophyte infection, and water supply).


2008 ◽  
Vol 45 (1) ◽  
pp. 16-46 ◽  
Author(s):  
Jesslyn F. Brown ◽  
Brian D. Wardlow ◽  
Tsegaye Tadesse ◽  
Michael J. Hayes ◽  
Bradley C. Reed

Sign in / Sign up

Export Citation Format

Share Document