scholarly journals Evaluation of Ionic Liquids as In Situ Extraction Agents during the Alcoholic Fermentation of Carob Pod Extracts

Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 90 ◽  
Author(s):  
Sergio Sanchez-Segado ◽  
María José Salar-García ◽  
Víctor Manuel Ortiz-Martínez ◽  
Antonia Pérez de los Ríos ◽  
Francisco José Hernández-Fernández ◽  
...  

Anhydrous ethanol is a promising alternative to gasoline in fuel engines. However, since ethanol forms an azeotrope with water, high-energy-consumption separation techniques such as azeotropic distillation, extractive distillation, and molecular sieves are needed to produce anhydrous ethanol. This work discusses the potential development of an integrated process for bioethanol production using ionic liquids and Ceratonia siliqua as a carbohydrate source for further fermentation of the aqueous extracts. A four-stage counter-current system was designed to improve the sugar extraction yield to values close to 99%. The alcoholic fermentation of the extracts showed ethanol concentrations of 95 g/L using the microorganism Saccharomyces cerevisae. The production of anhydrous ethanol through extractive distillation with ethylene glycol was simulated using CHEMCAD software, with an energy consumption of 13.23 MJ/Kg of anhydrous ethanol. Finally, several ionic liquids were analyzed and are proposed as potential solvents for the recovery of bioethanol for the design of an integrated extraction–fermentation–separation process, according to their ability to extract ethanol from aqueous solutions and their biocompatibility with the microorganism used in this study.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 165
Author(s):  
Hao Qin ◽  
Zihao Wang ◽  
Zhen Song ◽  
Xiang Zhang ◽  
Teng Zhou

The separation of 1,3-butadiene (1,3-C4H6) and 1-butene (n-C4H8) is quite challenging due to their close boiling points and similar molecular structures. Extractive distillation (ED) is widely regarded as a promising approach for such a separation task. For ED processes, the selection of suitable entrainer is of central importance. Traditional ED processes using organic solvents suffer from high energy consumption. To tackle this issue, the utilization of ionic liquids (ILs) can serve as a potential alternative. In this work, a high-throughput computational screening of ILs is performed to find proper entrainers, where 36,260 IL candidates comprising of 370 cations and 98 anions are involved. COSMO-RS is employed to calculate the infinite dilution extractive capacity and selectivity of the 36,260 ILs. In doing so, the ILs that satisfy the prespecified thermodynamic criteria and physical property constraints are identified. After the screening, the resulting IL candidates are sent for rigorous process simulation and design. 1,2,3,4,5-pentamethylimidazolium methylcarbonate is found to be the optimal IL solvent. Compared with the benchmark ED process where the organic solvent N-methyl-2-pyrrolidone is adopted, the energy consumption is reduced by 26%. As a result, this work offers a new IL-based ED process for efficient 1,3-C4H6 production.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 939
Author(s):  
Yang

Ammonia (NH3) has played an essential role in meeting the increasing demand for food and the worldwide need for nitrogen (N2) fertilizer since 1913. Unfortunately, the traditional Haber–Bosch process for producing NH3 from N2 is a high energy-consumption process with approximately 1.9 metric tons of fossil CO2 being released per metric ton of NH3 produced. As a very challenging target, any ideal NH3 production process reducing fossil energy consumption and environmental pollution would be welcomed. Catalytic NH3 synthesis is an attractive and promising alternative approach. Therefore, developing efficient catalysts for synthesizing NH3 from N2 under ambient conditions would create a significant opportunity to directly provide nitrogenous fertilizers in agricultural fields as needed in a distributed manner. In this paper, the literature on alternative, available, and sustainable NH3 production processes in terms of the scientific aspects of the spatial structures of nitrogenase metalloclusters, the mechanism of reducing N2 to NH3 catalyzed by nitrogenase, the synthetic analogues of nitrogenase metalloclusters, and the opportunities for continued research are reviewed.


2020 ◽  
Vol 984 ◽  
pp. 189-194
Author(s):  
Zhi Min Sun ◽  
Bing Li

Iron and steel making is an industry with high energy consumption and greenhouse gas emissions. The work is to carry out the CO2 capture experimental study as background of the blast furnace gas, increase the calorific value of the blast furnace gas and reduce greenhouse gas emissions and the energy consumption of CO2 gas in the follow-up process cycle. In this paper, according to the principle of acid base neutralization, [EDA]L and [EDA]P contained amino ionic liquids are synthesized in ice water bath condition, which is made from lactic acid, formic acid and ethylenediamine. The synthesis process was explored, the viscosity and infrared spectroscopy of synthetic ionic liquid were characterized, the boiling point of ionic liquids were calculated, CO2 absorption experiments were carried out under normal temperature and pressure. The results indicate that the compositions are ionic liquids having target structures and the maximum molar absorption of ionic liquid to CO2 reaches 0.45 mol.


2008 ◽  
Vol 59 (2) ◽  
pp. 231-242
Author(s):  
Florin Oprea ◽  
Ionut Stoica

It is now a fact that biofuels have a certain future, whether it is about �biodiesel� or �bioethanol�. EU intends to impose continuous increase of biofuels proportion in commercial products. Ethanol can be used �per se� in commercial gasoline (in different proportions) or can be used instead of methanol in etherification reaction. In both cases it is necessary to use anhydrous ethanol. There are several drying processes: azeotropic distillation, extractive distillation, pressure swing distillation, and adsorption. Present work proposes azeotropic distillation using like entrainer petroleum cuts or commercial gasoline pool. Finally, anhydrous ethanol contains hydrocarbons in several proportions and can be used like commercial gasoline component. The main advantage of this process is that the separation alcohol-hydrocarbons is not so tight, resulting important reducing of the energy consumption in process. There is used a rigorous thermodynamic model as the results are very trusted.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7133
Author(s):  
Tehreem Nasir ◽  
Safdar Raza ◽  
Muhammad Abrar ◽  
Hafiz Abd ul Muqeet ◽  
Harun Jamil ◽  
...  

High energy consumption, rising environmental concerns and depleting fossil fuels demand an increase in clean energy production. The enhanced resiliency, efficiency and reliability offered by microgrids with distributed energy resources (DERs) have shown to be a promising alternative to the conventional grid system. Large-sized commercial customers like institutional complexes have put significant efforts to promote sustainability by establishing renewable energy systems at university campuses. This paper proposes the integration of a photovoltaic (PV) system, energy storage system (ESS) and electric vehicles (EV) at a University campus. An optimal energy management system (EMS) is proposed to optimally dispatch the energy from available energy resources. The problem is mapped in a Linear optimization problem and simulations are carried out in MATLAB. Simulation results showed that the proposed EMS ensures the continuous power supply and decreases the energy consumption cost by nearly 45%. The impact of EV as a storage tool is also observed. EVs acting as a source of energy reduced the energy cost by 45.58% and as a load by 19.33%. The impact on the cost for continuous power supply in case of a power outage is also analyzed.


2018 ◽  
Vol 29 (1) ◽  
pp. 43-65
Author(s):  
Xindong You ◽  
Yeli Li ◽  
Zhenyang Zhu ◽  
Lifeng Yu ◽  
Dawei Sun

This article describes how with the continuous expansion on the volume of data produced by sensors in Cyber Physical Systems, the scale of the cloud storage system has become larger. This will lead to the problems of a high energy consumption rate and a low utilization becoming a serious issue. In order to enhance the effective energy consumption, reduce the invalid energy consumption, and supply more flexible QoS for users in CPS, this article proposes an automatic energy gear-shifting mechanism with flexible QoS constraints (QGLG). The QGLG predicts system load of the follow-up period through a support vector machine model. According to the current system load, the predicted load, and the flexible QoS, QGLG automatically up-shifts and down-shifts among nodes. Substantive results from the simulation experiments done on GridSim show that the QGLG can achieve energy consumption reduction while satisfying the user's flexible QoS requirements. Compared with a similar energy-reducing mechanism, QGLG has its obvious advantage when considering the requirements of user with energy saved notwithstanding.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jianjun Yang

The Haber–Bosch process has been an important approach to produce ammonia for meeting the food need of increasing population and the worldwide need of nitrogenous fertilizers since 1913. However, the traditional ammonia production process is a high energy-consumption process, which usually produces 1 metric ton ammonia with releasing around 1.9 metric tons CO2. Photocatalytic ammonia synthesis under solar light as energy source, an attractive and promising alternative approach, is a very challenging target of reducing fossil energy consumption and environmental pollution. Therefore, photocatalytic ammonia production process would emerge huge opportunities by directly providing nitrogenous fertilizers in a distributed manner as needed in the agricultural fields. In this article, different metal oxide (sulfide)-based photocatalytic materials for reducing nitrogen to ammonia under ambient conditions are reviewed. This review provides insights into the most recent advancements in understanding the photocatalyst materials which are of fundamental significance to photocatalytic nitrogen reduction, including the state-of-the-art, challenges, and prospects in this research field.


Author(s):  
Cláudia Cavalcanti ◽  
João Queiroz ◽  
Luiz Stragevitch ◽  
de Rodrigues ◽  
Maria Pimentel

In this work, the ethanol fuel dehydration process was optimized using the Aspen Plus? simulator and a multivariate statistical technique based on the desirability function. The suitability of the ionic liquids 1-methylimidazolium chloride ([Mim][Cl]), 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) and 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), as extractive distillation entrainers, was also evaluated and compared to the conventional solvents, ethylene glycol and cyclohexane. Among the solvents studied, [Mim][Cl] required the lowest energy consumption, about 8% less energy use when compared to the optimized process using ethylene glycol. The multivariate statistical techniques employed were effective in the optimization of the extractive distillation processes as the process energy consumption could be minimized while achieving ethanol purity in agreement with the current specifications as well as obtaining a high solvent recovery. With the desirability approach it was possible to improve the process performance with little or no modification of existing processing plants.


Sign in / Sign up

Export Citation Format

Share Document