scholarly journals Framework for Predicting Failure in Polymeric Unidirectional Composites through Combined Experimental and Computational Mesoscale Modeling Techniques

Fibers ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 50
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Josh Robbins ◽  
Yatin Parakhiya ◽  
Subramaniam D. Rajan

As composites continue to be increasingly used, finite element material models that homogenize the composite response become the only logical choice as not only modeling the entire composite microstructure is computationally expensive but obtaining the entire suite of experimental data to characterize deformation and failure may not be possible. The focus of this paper is the development of a modeling framework where plasticity, damage, and failure-related experimental data are obtained for each composite constituent. Mesoscale finite elements models consisting of multiple repeating unit cells are then generated and used to represent a typical carbon fiber/epoxy resin unidirectional composite to generate the complete principal direction stress-strain curves. These models are subjected to various uniaxial states of stress and compared with experimental data. They demonstrate a reasonable match and provide the basic framework to completely define the composite homogenized material model that can be used as a vehicle for failure predictions.

2017 ◽  
Vol 52 (14) ◽  
pp. 1847-1872 ◽  
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Canio Hoffarth ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
...  

Test procedures for characterizing the orthotropic behavior of a unidirectional composite at room temperature and quasi-static loading conditions are developed and discussed. The resulting data consisting of 12 stress–strain curves and associated material parameters are used in a newly developed material model—an orthotropic elasto-plastic constitutive model that is driven by tabulated stress–strain curves and other material properties that allow for the elastic and inelastic deformation model to be combined with damage and failure models. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used to illustrate how the experimental procedures are developed and used. The generated data are then used to model a dynamic impact test. Results show that the developed framework implemented into a special version of LS-DYNA yields reasonably accurate predictions of the structural behavior.


2018 ◽  
Vol 53 (7) ◽  
pp. 941-967 ◽  
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Canio Hoffarth ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
...  

The focus of this paper is the development of test procedures to characterize the damage-related behavior of a unidirectional composite at room temperature and quasi-static loading conditions and use the resulting data in the damage sub-model of a newly developed material model for orthotropic composites. This material model has three distinct sub-models to handle elastic and inelastic deformations, damage, and failure. A unidirectional composite—T800/F3900 that was the focus of our previous work, is used to illustrate how the deformation and damage-related experimental procedures are developed and used. The implementation of the damage sub-model into LS-DYNA is verified using single-element tests and validated using impact tests. Results show that the implementation yields reasonably accurate predictions of impact behavior involving deformation and damage in structural composites.


2019 ◽  
Vol 54 (4) ◽  
pp. 463-484 ◽  
Author(s):  
Loukham Shyamsunder ◽  
Bilal Khaled ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
Kelly S Carney ◽  
...  

Theoretical and implementation details of an orthotropic plasticity model are presented. The model is comprised of three sub-models dealing with elastic and inelastic deformations, damage, and failure. The input to the three sub-models involves tabulated data that can be obtained from laboratory and/or virtual testing. In this article, the focus is on the development of the failure sub-model and its links to the other components. Details of how the user-selected failure criterion is used, and what steps are implemented post-failure are presented. The well-known Puck failure criterion is used in the numerical examples. Three validation tests are used to illustrate the strengths and weaknesses of the failure sub-model—10°, 15°, and 30° off-axis tests, a stacked-ply test carried out at room temperature under quasi-static loading, and finally, a high-speed impact test. Results indicate that while the deformation and damage sub-models give reasonably accurate results, the failure predictions are a huge challenge especially for high-speed impact tests.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


Author(s):  
Pavan Prakash Duvvuri ◽  
Rajesh Kumar Shrivastava ◽  
Sheshadri Sreedhara

Stringent emission legislations and growing health concerns have contributed to the evolution of soot modeling in diesel engines from simple empirical relations to methods involving detailed kinetics and complex aerosol dynamics. In this paper, four different soot models have been evaluated for the high temperature, high pressure combusting dodecane spray cases of engine combustion network (ECN) spray A which mimics engine-relevant conditions. The soot models considered include an empirical, a multistep, a method of moments based, and a discrete sectional method soot model. Two experimental cases with ambient oxygen volume of 21% and 15% have been modeled. A good agreement between simulations and experiments for vapor penetration and heat release rate has been obtained. Quasi-steady soot volume fraction contours for the four soot models have been compared with experiments. Contours of the species and source terms involved in soot modeling have also been compared for a better understanding of soot processes. The empirical soot model results in higher magnitude and spread of soot due to a lack of modeling framework for oxidation through OH species. Among the four models studied, the multistep soot model has been observed to provide the most promising agreement with the experimental data in terms of distribution of soot and location of peak soot volume fraction. Due to a two-way coupling of soot models, the detailed models predict an upstream location for soot as compared to the multi-step soot model which is one way coupled. A significant difference (of an order of magnitude) in the concentration of PAH (polycyclic aromatic hydrocarbons) precursor between multistep and detailed soot models has been observed because of precursor consumption due to the coupling of detailed soot models with chemical kinetics. It is recommended that kinetic schemes, especially those concerning PAH, be validated with experimental data with a kinetics-coupled soot model.


Author(s):  
Antoinette M. Maniatty ◽  
David J. Littlewood ◽  
Jing Lu

In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111}⟨110⟩ slip systems are compared to the results with the additional 12 {110}⟨110⟩ and {001}⟨110⟩ slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied.


2022 ◽  
Vol 119 (3) ◽  
pp. e2117232119
Author(s):  
Giulio Franchini ◽  
Ivan D. Breslavsky ◽  
Francesco Giovanniello ◽  
Ali Kassab ◽  
Gerhard A. Holzapfel ◽  
...  

Experimental data and a suitable material model for human aortas with smooth muscle activation are not available in the literature despite the need for developing advanced grafts; the present study closes this gap. Mechanical characterization of human descending thoracic aortas was performed with and without vascular smooth muscle (VSM) activation. Specimens were taken from 13 heart-beating donors. The aortic segments were cooled in Belzer UW solution during transport and tested within a few hours after explantation. VSM activation was achieved through the use of potassium depolarization and noradrenaline as vasoactive agents. In addition to isometric activation experiments, the quasistatic passive and active stress–strain curves were obtained for circumferential and longitudinal strips of the aortic material. This characterization made it possible to create an original mechanical model of the active aortic material that accurately fits the experimental data. The dynamic mechanical characterization was executed using cyclic strain at different frequencies of physiological interest. An initial prestretch, which corresponded to the physiological conditions, was applied before cyclic loading. Dynamic tests made it possible to identify the differences in the viscoelastic behavior of the passive and active tissue. This work illustrates the importance of VSM activation for the static and dynamic mechanical response of human aortas. Most importantly, this study provides material data and a material model for the development of a future generation of active aortic grafts that mimic natural behavior and help regulate blood pressure.


2017 ◽  
Vol 37 (4) ◽  
pp. 238-246
Author(s):  
Uri Breiman ◽  
Jacob Aboudi ◽  
Rami Haj-Ali

The compressive strength of unidirectional composites is strongly influenced by the elastic and strength properties of the fiber and matrix phases, as well as by the local geometrical properties, such as fiber volume fraction, misalignment, and waviness. In the present investigation, two microbuckling criteria are proposed and examined against a large volume of measured data of unidirectional composites taken from the literature. The first criterion is based on the compressive strength formulation using the buckling of Timoshenko’s beam. It contains a single parameter that can be determined according to the best fit to experimental data for various types of polymeric matrix composites. The second criterion is based on buckling-wave propagation analogy using the solution of an eigenvalue problem. Both criteria provide closed-form expressions for the compressive strength of unidirectional composites. We propose modifications of the two criteria by a fitting approach, for a wide range of fiber volume fractions, applied to four classes of unidirectional composite systems. Furthermore, a normalized form of the two models is presented after calibration in order to compare their prediction against experimental data for each of the material systems. The new modified criteria are shown to give a good match to a wide range of unidirectional composite systems. They can be employed as practical compression failure criteria in the analysis and design of laminated structures.


Author(s):  
Sebastien Sequeira ◽  
Kevin Bennion ◽  
J. Emily Cousineau ◽  
Sreekant Narumanchi ◽  
Gilberto Moreno ◽  
...  

Abstract One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multi-physics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a Lumped Parameter Thermal Network (LPTN) model of an Internal Permanent Magnet synchronous motor within the commercially available Motor-CAD® modeling environment. The validation is based on temperature comparison with experimental data and with more detailed Finite Element Analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4% - for the highest temperature in the slot-winding and the end-winding - was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot-winding and end-winding. As for the LTPN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance.


Sign in / Sign up

Export Citation Format

Share Document