scholarly journals Magnetic Cellulose-Chitosan Nanocomposite for Simultaneous Removal of Emerging Contaminants: Adsorption Kinetics and Equilibrium Studies

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 190
Author(s):  
Phodiso Prudence Mashile ◽  
Philiswa Nosizo Nomngongo

The presence of pharmaceuticals in water systems threatens both terrestrial and aquatic life across the globe. Some of such contaminants are β-blockers and anticonvulsants, which have been constantly detected in different water systems. Various methodologies have been introduced for the removal of these emerging pollutants from different waters. Among them, adsorption using nanomaterials has proved to be an efficient and cost-effective process for the removal of pharmaceuticals from contaminated water. In this this study, a firsthand/time approach applying a recyclable magnetic cellulose-chitosan nanocomposite for effective simultaneous removal of two β-blockers (atenolol (ATN)) and propranolol (PRP) and an anticonvulsant (carbamazepine (CBZ)) is reported. A detailed characterization of the eco-friendly, biocompatible cellulose-chitosan nanocomposite with magnetic properties was performed at various rates of synthesis using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy. A N2c adsorption-desorption test showed that the prepared nanocomposite is mesoporous, with a BET area of 112 m2 g−1. The BET isotherms results showed that the magnetic cellulose-chitosan nanocomposite has a pore size of 24.1 nm. The adsorption equilibrium of PRP and CBZ fitted with the Langmuir isotherm was consistent with the highest coefficient of determination (R2 = 0.9945) and (R2 = 0.9942), respectively, while the Sips model provided a better fit for ATN, with a coefficient of determination R2 = 0.9956. The adsorption rate was accompanied by a pseudo-second-order kinetics. Moreover, the swelling test showed that up to 100 percent swelling of the magnetic cellulose-chitosan nanocomposite was achieved.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 963
Author(s):  
Marwa El-Azazy ◽  
Iman Nabil ◽  
Siham S. Hassan ◽  
Ahmed S. El-Shafie

Olive stone biochars (OSBC), both pristine and following magnetization (MAG–OSBC), were utilized as eco-friendly and cost-effective sorbents for the antituberculosis, clofazimine (CLOF). Morphologies, textures, surface functionalities, and thermal stabilities of both adsorbents were explored using SEM, EDX, TEM, BET, FT-IR, Raman, XRD and TGA analyses. SEM analysis showed meso- and macroporous surfaces. BET data showed that the MAG–OSBC possesses a larger surface area (33.82 m2/g) and pore volume. Batch adsorption studies were conducted following the experimental scenario of Box–Behnken (BB) design. The adsorption efficiency of both adsorbents was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g). Dependent variables (%R and qe) were maximized as a function of four factors: pH, sorbent dose (AD), the concentration of CLOF ([CLOF]), and contact time (CT). A %R of 98.10% and 98.61% could be obtained using OSBC and MAG–OSBC, respectively. Equilibrium studies indicated that both Langmuir and Freundlich models were perfectly fit for adsorption of CLOF. Maximum adsorption capacity (qmax) of 174.03 mg/g was obtained using MAG–OSBC. Adsorption kinetics could be best illustrated using the pseudo-second-order (PSO) model. The adsorption–desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 92% after the sixth cycles.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1760
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
Daler Abdusamadzoda ◽  
Alexey Safonov ◽  
...  

The sorption properties of Shewanella xiamenensis biofilm formed on zeolite (mineral-organic sorbent) as a sorbent have been investigated aiming to determine its suitability for complex zinc-containing effluent treatment. The optimum conditions for metal sorption from synthetic solutions were evaluated by changing the pH, zinc concentration, temperature, and time of sorption. The highest removal of metal ions was attained at pH range 3.0–6.0 within 60–150 min of sorbent-sorbate contact. The results obtained from the equilibrium studies were described using the Langmuir, Freundlich, and Temkin models. Maximum sorption capacity of the sorbent calculated from the Langmuir model changed from 3.4 to 6.5 mg/g. High coefficient of determination values calculated for pseudo-second-order and Elovich models indicate the predominant role of chemisorption in metal removal. Gibbs energy and ∆H° values point at the spontaneous and endothermic character of the sorption. The effect of pH and biosorbent mass on Zn(II) sorption from industrial effluent with an initial Zn(II) concentration of 52.8 mg/L was tested. Maximum removal of zinc ions (85%) was achieved at pH 6.0 by applying a two-step treatment system.


2021 ◽  
Vol 9 (2) ◽  
pp. 35-39
Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Ain Aqilah Basirun ◽  
Mohd Yunus Shukor

An example of biosorption is when the sorbent is made from a biodegradable material. Biosorption is now being seen as a simple, cost-effective, and environmentally acceptable alternative to traditional pollution treatment methods. Bioremediation is one of the branches of bioremediation that is used to minimise pollution in the context of incorrect dye waste disposal. The sorption isotherm of Ethyl Violet onto graphene oxide were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC) that showed that the pseudo-second-order model was the best which was the same finding from the original published work. The calculated evidence ratio was 11 with an AICc probability value of 0.91 indicating that the best model was at least 11 times better than the nearest best model, which was pseudo-1st. Further analysis is needed to provide proof for the mechanism usually tied to this kinetic. Nonlinear regression analysis using the pseudo-2nd order model for the highest concentration tested, which was 10 mM, gave values of equilibrium sorption capacity qe of 30.928 mg/g (95% confidence interval from 29.328 to 32.527) and a value of the pseudo-2nd-order rate constant, k2 of 0.020 (95% confidence interval from 0.011 to 0.028).


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
G. P. Kofa ◽  
V. H. Gomdje ◽  
C. Telegang ◽  
S. Ndi Koungou

Excessive fluoride in potable water is a serious health problem in rural areas of many developing countries. Hence, there is a need to find a simple and cost-effective method for water defluoridation in such areas. In the northern part of Cameroon, clay pots are used for cooking food and water storage. The firing of these pots consists of intensive burning using fire wood. They were tested as a potential adsorbent for removing excess fluoride from water. Experiments were carried out in a jar test at room temperature (25 ± 2°C). Effects of contact time (0–90 min), pH (4, 5, 7, 8, and 9), stirring speed (60, 90, 120, and 200 rpm), and ionic strength (0–1000 mg/L) were investigated. Results showed that equilibrium was attained in 10 min whatever the pH. Pseudo-second-order and pore diffusion models described well the adsorption process. The highest amount of fluoride adsorbed (1.6 mg/g) was obtained at pH 4-5 and the optimum stirring speed is 120 rpm. Ionic strength has a significant effect on fluoride adsorption.


2020 ◽  
Vol 26 (4) ◽  
pp. 200250-0
Author(s):  
Abdul Rahman Abdul Rahim ◽  
Iswarya ◽  
Khairiraihanna Johari ◽  
Nasir Shehzad ◽  
Norasikin Saman ◽  
...  

Desiccated coconut waste (DCW) is an agricultural waste that originates from the coconut milk processing industry. In this study, it was utilized for the removal of copper (Cu(II)) and nickel (Ni(II)) via adsorption process. The physicochemical characterization of the DCW adsorbent shows that the adsorbent have a surface area of 6.63 m<sup>2</sup>/g, have high elemental carbon content and existences of important functional groups on its surface. The adsorptive capability of DCW adsorbent in removing the heavy metal were conducted in batch studies. DCW adsorbent performed highest Ni(II) and Cu(II) adsorption capacity at pH 6, where equilibrium is achieved at 450 minutes. The kinetic analysis showed the adsorption agreed with pseudo-second order kinetic model, indicating the Cu(II) and Ni(II) adsorption were a chemical adsorption, limited by the film diffusion. The DCW adsorbent still retained its effective adsorption capacity after 2 adsorption-desorption cycles, which is one of the excellent criteria of a good adsorbent for an adsorption process.


2010 ◽  
Vol 64 (4) ◽  
pp. 295-304 ◽  
Author(s):  
G. Alagumuthu ◽  
M. Rajan

The carbonized ground nut shell (GNSC) was impregnated with zirconium oxy chloride, and tested to determine its capacity and kinetics for fluoride adsorption from aqueous solutions. The analysis of the isotherm equilibrium data using the Langmuir, Freundlich and Redlich-Peterson equations by linear methods showed that the data fitted better with Freundlich model than the other two. Thermodynamic studies revealed that the spontaneous nature of fluoride adsorption with increase of entropy and an endothermic process. The kinetic data obtained for fluoride adsorption on zirconium impregnated ground nut shell carbon (ZIGNSC) obeyed the pseudo-second order equation. X-ray diffraction (XRD) studies confirmed the deposition of fluoride on material and Fourier transform infrared (FTIR) studies also showed the involvement of adsorbate on the adsorbent surface in the adsorption interaction. The ZIGNSC provides a cost effective material to the defluoridation problem in the developing countries by its great potential application in the fluoride removal from water.


2019 ◽  
Vol 10 (4) ◽  
pp. 295-304
Author(s):  
Jahangir Alam ◽  
Mohammad Nasir Uddin

A lingo-cellulosic material Jute Stick Powder was used as a biosorbent to remove Pb(II) ions from aqueous solution and the biosorption behavior was investigated as a function of pH, metal ion concentration, adsorbent dosages and agitation time. Sorption binding sites present in JSP was assessed by Infrared spectroscopy (IR) and Scanning Electron Micrograph (SEM). The determined experimental data were fitted to some common kinetic and equilibrium models. Langmuir isotherm and pseudo-second-order kinetic model gave better fit to experimental data. The study revealed that spontaneous ion-exchange and complexation process involved in the adsorption mechanism. When the repeated adsorption-desorption cycles were performed, JSP kept its adsorptive efficiency even after three cycles of reuse.


2020 ◽  
Vol 20 (4) ◽  
pp. 755
Author(s):  
Nurul Ain Safiqah Md Sandollah ◽  
Sheikh Ahmad Izaddin Sheikh Mohd Ghazali ◽  
Wan Nazihah Wan Ibrahim ◽  
Ruhaida Rusmin

The efficiencies of raw (RK) and acid activated (0.5 M AAK) kaolinite clay minerals to remove methylene blue (MB) dyes in aqueous solution were investigated and compared. The 0.5 M AAK was prepared by treatment of RK in dilute 0.5 M HCl aqueous solution under reflux. Kaolinite adsorbents were characterized and their MB removal performances were evaluated via the batch method. MB desorption from spent kaolinites was investigated at pH 4 to 8. The MB removal was increased with increasing initial dye concentration, agitation speed and adsorbent dosage in 60 min reaction time at pH 6. Both kaolinites showed high MB removal (up to 97%). The Freundlich model has the best-fit equilibrium adsorption isotherm model for RK and 0.5 M AAK. The kinetic data for both adsorbents showed strong agreement with the pseudo second order kinetic model (r2 > 0.98). Nevertheless, the spent RK adsorbent demonstrated a significant higher MB retention than 0.5 M AAK in desorption experiments. Kaolinite clays have great potential as cost-effective materials for dyes removal in wastewater treatment.


2020 ◽  
Author(s):  
Anurag Sohane ◽  
Ravinder Agarwal

Abstract Various simulation type tools and conventional algorithms are being used to determine knee muscle forces of human during dynamic movement. These all may be good for clinical uses, but have some drawbacks, such as higher computational times, muscle redundancy and less cost-effective solution. Recently, there has been an interest to develop supervised learning-based prediction model for the computationally demanding process. The present research work is used to develop a cost-effective and efficient machine learning (ML) based models to predict knee muscle force for clinical interventions for the given input parameter like height, mass and angle. A dataset of 500 human musculoskeletal, have been trained and tested using four different ML models to predict knee muscle force. This dataset has obtained from anybody modeling software using AnyPyTools, where human musculoskeletal has been utilized to perform squatting movement during inverse dynamic analysis. The result based on the datasets predicts that the random forest ML model outperforms than the other selected models: neural network, generalized linear model, decision tree in terms of mean square error (MSE), coefficient of determination (R2), and Correlation (r). The MSE of predicted vs actual muscle forces obtained from the random forest model for Biceps Femoris, Rectus Femoris, Vastus Medialis, Vastus Lateralis are 19.92, 9.06, 5.97, 5.46, Correlation are 0.94, 0.92, 0.92, 0.94 and R2 are 0.88, 0.84, 0.84 and 0.89 for the test dataset, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215
Author(s):  
Nina Finčur ◽  
Paula Sfîrloagă ◽  
Predrag Putnik ◽  
Vesna Despotović ◽  
Marina Lazarević ◽  
...  

Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol–gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production.


Sign in / Sign up

Export Citation Format

Share Document