scholarly journals Editorial—Role of DNA Methyltransferases in the Epigenome

Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 574 ◽  
Author(s):  
Jeltsch ◽  
Gowher

DNA methylation, a modification found in most species, regulates chromatin functions in conjunction with other epigenome modifications, such as histone post-translational modifications and non-coding RNAs. In mammals, DNA methylation has essential roles in development by orchestrating the generation and maintenance of the phenotypic diversity of human cell types. This Special Issue of Genes contains eight review articles, which cover several aspects of epigenome regulation by DNA methyltransferases (DNMTs), the enzymes responsible for the introduction of DNA methylation. The manuscripts present the most recent advances regarding the structure and function of DNMTs, their targeting and regulation by interacting factors and chromatin modifications, and the roles of DNMTs in mammalian development and human diseases. However, many aspects of these important enzymes are still insufficiently understood. Potential directions of future work are the regulation of DNMTs by post-translational modifications and their connection to cellular signaling and second messenger cascades on one hand and to large multifactorial epigenetic chromatin circuits on the other. Additionally, technical advancements, including the availability of designer nucleosomes and the rapid development of cryo-electron microscopy are expected to trigger breakthrough discoveries in this exciting field.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

AbstractDetermining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


2016 ◽  
Vol 113 (32) ◽  
pp. 9111-9116 ◽  
Author(s):  
Adam J. Bewick ◽  
Lexiang Ji ◽  
Chad E. Niederhuth ◽  
Eva-Maria Willing ◽  
Brigitte T. Hofmeister ◽  
...  

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


2015 ◽  
Vol 112 (22) ◽  
pp. 6800-6806 ◽  
Author(s):  
Benyam Kinde ◽  
Harrison W. Gabel ◽  
Caitlin S. Gilbert ◽  
Eric C. Griffith ◽  
Michael E. Greenberg

DNA methylation at CpG dinucleotides is an important epigenetic regulator common to virtually all mammalian cell types, but recent evidence indicates that during early postnatal development neuronal genomes also accumulate uniquely high levels of two alternative forms of methylation, non-CpG methylation and hydroxymethylation. Here we discuss the distinct landscape of DNA methylation in neurons, how it is established, and how it might affect the binding and function of protein readers of DNA methylation. We review studies of one critical reader of DNA methylation in the brain, the Rett syndrome protein methyl CpG-binding protein 2 (MeCP2), and discuss how differential binding affinity of MeCP2 for non-CpG and hydroxymethylation may affect the function of this methyl-binding protein in the nervous system.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Yu-Xing Lu ◽  
Xin-Xin Liu ◽  
Wei-Bing Liu ◽  
Bang-Ce Ye

Abstract One hundred and fifty GCN5-like acetyltransferases with amino acid-binding (ACT)-GCN5-related N-acetyltransferase (GNAT) domain organization have been identified in actinobacteria. The ACT domain is fused to the GNAT domain, conferring amino acid-induced allosteric regulation to these protein acetyltransferases (Pat) (amino acid sensing acetyltransferase, (AAPatA)). Members of the AAPatA family share similar secondary structure and are divided into two groups based on the allosteric ligands of the ACT domain: the asparagine (Asn)-activated PatA and the cysteine (Cys)-activated PatA. The former are mainly found in Streptomyces; the latter are distributed in other actinobacteria. We investigated the effect of Asn and Cys on the acetylation activity of Sven_0867 (SvePatA, from Streptomyces venezuelae DSM 40230) and Amir_5672 (AmiPatA, from Actinosynnema mirum strain DSM 43827), respectively, as well as the relationship between the structure and function of these enzymes. These findings indicate that the activity of PatA and acetylation level of proteins may be closely correlated with intracellular concentrations of Asn and Cys in actinobacteria. Amino acid-sensing signal transduction in acetyltransferases may be a mechanism that regulates protein acetylation in response to nutrient availability. Future work examining the relationship between protein acetylation and amino acid metabolism will broaden our understanding of post-translational modifications (PTMs) in feedback regulation.


2014 ◽  
Vol 369 (1652) ◽  
pp. 20130512 ◽  
Author(s):  
Jaehoon Shin ◽  
Guo-li Ming ◽  
Hongjun Song

DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.


2021 ◽  
Author(s):  
Ada G Rodríguez-Campuzano ◽  
Luisa C. Hernández-Kelly ◽  
Arturo Ortega

Abstract Exposure to xenobiotics has a significant impact in brain physiology, that could be liked to an excitotoxic processes induced by a massive release of the main excitatory neurotransmitter, L-glutamate. Overstimulation of post-synaptic and extra-synaptic glutamate receptors leads to a disturbance of intracellular calcium homeostasis that is critically involved in neuronal death. Hence, glutamate extracellular levels are tightly regulated through its uptake by glial glutamate transporters. It has been observed that glutamate regulates its own removal, both in the short-time frame via a transporter-mediated decrease in the uptake, and in the long-term through the transcriptional control of its gene expression, a process mediated by glutamate receptors that involves the Ca2+/diacylglycerol-dependent protein kinase and the transcription factor Ying Yang 1. Taking into consideration that this transcription factor is as a member of the Polycomb complex and thus, part of repressive and activating chromatin remodeling factors, it might direct the interaction of DNA methyltransferases or dioxygenases of methylated cytosines to their target sequences. Since glial glutamate transporters promoters are targets of Ying-Yang 1, in this contribution, we explored the role of dynamic DNA methylation in the expression and function of glial glutamate transporters. To this end, we used the well-characterized models of primary cultures of chick cerebellar Bergmann glia cells and a human retina-derived Müller glia cell line. A time and dose-dependent increase in global DNA methylation was found upon glutamate exposure. Under hypomethylation conditions, both glial glutamate transporters expression and function were increased. These results, favor the notion that a dynamic methylation program triggered by glutamate in glia cells modulates one of its major functions: glutamate removal.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1204-1204
Author(s):  
Annegret Glasow ◽  
Angela Barrett ◽  
Rajeev Gupta ◽  
David Grimwade ◽  
Marieke von Lindern ◽  
...  

Abstract Retinoids exert a variety of effects on both normal and malignant hematopoietic cells. To date, three different retinoic acid receptor (RAR) and retinoid X receptor (RXR) genes have been characterized, each encoding multiple N-terminal protein isoforms. RXRs serve as co-regulators for RARs, and many other nuclear receptors integrating different signalling pathways. All-trans-retinoic acid (ATRA) signaling pathway is of critical importance for optimal myelomonocytic differentiation and its disruption by translocations of the RARα gene leads to acute promyelocytic leukemia (APL). APL associated fusion oncoproteins, such as PML-RARα and PLZF-RARα, function through recruitment of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), thus promoting an inactive chromatin state and leading to repression of RARα target genes. Recently, we demonstrated that up-regulation of RARα2 expression by ATRA directly correlates with differentiation of APL and non-APL AML cells and that RARα2 transcription is silenced by DNA methylation in AML cell lines. Using primary AML samples as well as normal cord and peripheral blood derived cells representing different stages of myelomonocytic development we now show that expression of RARα2 increases with maturation of hematopietic cells. Expression of RARα1 on the other hand, which is transcribed from a distinct promoter, remains relatively constant throughout the different stages of myelomonocytic development. The levels of RARα1 expression in various primary AML cell types appear to be similar to those found in normal hematopietic cells. Consistent with data derived from AML cell lines, however, the RARα2 isoform is poorly expressed in all samples. Compared with CD34+/CD133+ or CD34+ progenitors, and more mature CD33+ myeloid cells, RARα2 is expressed at much lower levels in a variety of primary AML cells and its expression is not effectively induced by myelomonocytic growth factors and/or ATRA. Negatively acting epigenetic changes, such as DNA methylation, appear to be responsible for deregulated expression of RARα2 in AML cells, although their pattern and extent differs significantly between AML cell lines and primary AML samples. Taken together our data suggest that agents, which revert negatively acting epigenetic changes may restore expression of the RARα2 isoform in AML cells and render them more responsive to ATRA as well as other differentiation inducers.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 110 ◽  
Author(s):  
Carlos de la Calle-Fabregat ◽  
Octavio Morante-Palacios ◽  
Esteban Ballestar

Immune cells are one of the most complex and diverse systems in the human organism. Such diversity implies an intricate network of different cell types and interactions that are dependently interconnected. The processes by which different cell types differentiate from progenitors, mature, and finally exert their function requires an orchestrated succession of molecular processes that determine cell phenotype and function. The acquisition of these phenotypes is highly dependent on the establishment of unique epigenetic profiles that confer identity and function on the various types of effector cells. These epigenetic mechanisms integrate microenvironmental cues into the genome to establish specific transcriptional programs. Epigenetic modifications bridge environment and genome regulation and play a role in human diseases by their ability to modulate physiological programs through external stimuli. DNA methylation is one of the most ubiquitous, stable, and widely studied epigenetic modifications. Recent technological advances have facilitated the generation of a vast amount of genome-wide DNA methylation data, providing profound insights into the roles of DNA methylation in health and disease. This review considers the relevance of DNA methylation to immune system cellular development and function, as well as the participation of DNA methylation defects in immune-mediated pathologies, illustrated by selected paradigmatic diseases.


2009 ◽  
Vol 29 (10) ◽  
pp. 2794-2803 ◽  
Author(s):  
Xiaoling Wang ◽  
Meenalakshmi Chinnam ◽  
Jianmin Wang ◽  
Yanqing Wang ◽  
Xiaojing Zhang ◽  
...  

ABSTRACT Accumulating evidence suggests that regulation of RNA processing through an RNP-driven mechanism is important for coordinated gene expression. This hypothesis predicts that defects in RNP biogenesis will adversely affect the elaboration of specific gene expression programs. To explore the role of RNP biogenesis on mammalian development, we have characterized the phenotype of mice hypomorphic for Thoc1. Thoc1 encodes an essential component of the evolutionarily conserved TREX complex. TREX accompanies the elongating RNA polymerase II and facilitates RNP assembly and recruitment of RNA processing factors. Hypomorphic Thoc1 mice are viable despite significantly reduced Thoc1 expression in the tissues examined. While most tissues of Thoc1-deficient mice appear to develop and function normally, gametogenesis is severely compromised. Male infertility is associated with a loss in spermatocyte viability and abnormal endocrine signaling. We suggest that loss of spermatocyte viability is a consequence of defects in the expression of genes required for normal differentiation of cell types within the testes. A number of the genes affected appear to be direct targets for regulation by Thoc1. These findings support the notion that Thoc1-mediated RNP assembly contributes to the coordinated expression of genes necessary for normal differentiation and development in vivo.


2018 ◽  
Vol 46 (5) ◽  
pp. 1191-1202 ◽  
Author(s):  
Humaira Gowher ◽  
Albert Jeltsch

As part of the epigenetic network, DNA methylation is a major regulator of chromatin structure and function. In mammals, it mainly occurs at palindromic CpG sites, but asymmetric methylation at non-CpG sites is also observed. Three enzymes are involved in the generation and maintenance of DNA methylation patterns. DNMT1 has high preference for hemimethylated CpG sites, and DNMT3A and DNMT3B equally methylate unmethylated and hemimethylated DNA, and also introduce non-CpG methylation. Here, we review recent observations and novel insights into the structure and function of mammalian DNMTs (DNA methyltransferases), including new structures of DNMT1 and DNMT3A, data on their mechanism, regulation by post-translational modifications and on the function of DNMTs in cells. In addition, we present news findings regarding the allosteric regulation and targeting of DNMTs by chromatin modifications and chromatin proteins. In combination, the recent publications summarized here impressively illustrate the intensity of ongoing research in this field. They provide a deeper understanding of key mechanistic properties of DNMTs, but they also document still unsolved issues, which need to be addressed in future research.


Sign in / Sign up

Export Citation Format

Share Document