scholarly journals Actions of L-thyroxine (T4) and Tetraiodothyroacetic Acid (Tetrac) on Gene Expression in Thyroid Cancer Cells

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 755
Author(s):  
Paul J. Davis ◽  
Hung-Yun Lin ◽  
Aleck Hercbergs ◽  
Shaker A. Mousa

The clinical behavior of thyroid cancers is seen to reflect inherent transcriptional activities of mutated genes and trophic effects on tumors of circulating pituitary thyrotropin (TSH). The thyroid hormone, L-thyroxine (T4), has been shown to stimulate proliferation of a large number of different forms of cancer. This activity of T4 is mediated by a cell surface receptor on the extracellular domain of integrin αvβ3. In this brief review, we describe what is known about T4 as a circulating trophic factor for differentiated (papillary and follicular) thyroid cancers. Given T4′s cancer-stimulating activity in differentiated thyroid cancers, it was not surprising to find that genomic actions of T4 were anti-apoptotic. Transduction of the T4-generated signal at the integrin primarily involved mitogen-activated protein kinase (MAPK). In thyroid C cell-origin medullary carcinoma of the thyroid (MTC), effects of thyroid hormone analogues, such as tetraiodothyroacetic acid (tetrac), include pro-angiogenic and apoptosis-linked genes. Tetrac is an inhibitor of the actions of T4 at αvβ3, and it is assumed, but not yet proved, that the anti-angiogenic and pro-apoptotic actions of tetrac in MTC cells are matched by T4 effects that are pro-angiogenic and anti-apoptotic. We also note that papillary thyroid carcinoma cells may express the leptin receptor, and circulating leptin from adipocytes may stimulate tumor cell proliferation. Transcription was stimulated by leptin in anaplastic, papillary, and follicular carcinomas of genes involved in invasion, such as matrix metalloproteinases (MMPs). In summary, thyroid hormone analogues may act at their receptor on integrin αvβ3 in a variety of types of thyroid cancer to modulate transcription of genes relevant to tumor invasiveness, apoptosis, and angiogenesis. These effects are independent of TSH.

2021 ◽  
Vol 101 (1) ◽  
pp. 319-352
Author(s):  
Paul J. Davis ◽  
Shaker A. Mousa ◽  
Hung-Yun Lin

The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3′-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.


2021 ◽  
Vol 22 (6) ◽  
pp. 3117
Author(s):  
Loredana Lorusso ◽  
Virginia Cappagli ◽  
Laura Valerio ◽  
Carlotta Giani ◽  
David Viola ◽  
...  

Differentiated thyroid cancers (DTC) are commonly and successfully treated with total thyroidectomy plus/minus radioiodine therapy (RAI). Medullary thyroid cancer (MTC) is only treated with surgery but only intrathyroidal tumors are cured. The worst prognosis is for anaplastic (ATC) and poorly differentiated thyroid cancer (PDTC). Whenever a local or metastatic advanced disease is present, other treatments are required, varying from local to systemic therapies. In the last decade, the efficacy of the targeted therapies and, in particular, tyrosine kinase inhibitors (TKIs) has been demonstrated. They can prolong the disease progression-free survival and represent the most important therapeutic option for the treatment of advanced and progressive thyroid cancer. Currently, lenvatinib and sorafenib are the approved drugs for the treatment of RAI-refractory DTC and PDTC while advanced MTC can be treated with either cabozantinib or vandetanib. Dabrafenib plus trametinib is the only approved treatment by FDA for BRAFV600E mutated ATC. A new generation of TKIs, specifically for single altered oncogenes, is under evaluation in phase 2 and 3 clinical trials. The aim of this review was to provide an overview of the current and future treatments of thyroid cancer with regards to the advanced and progressive cases that require systemic therapies that are becoming more and more targeted on the molecular identity of the tumor.


2017 ◽  
Vol 24 (12) ◽  
pp. T311-T329 ◽  
Author(s):  
Robert C Mould ◽  
Jacob P van Vloten ◽  
Amanda W K AuYeung ◽  
Khalil Karimi ◽  
Byram W Bridle

The incidence of thyroid cancers has been steadily increasing worldwide over the past few decades. Although five-year survival rates for differentiated thyroid cancers are upwards of 90%, clinical outcomes for patients with undifferentiated, recurrent and/or metastatic disease are often dismal despite conventional interventions. As such, there is a demand for novel treatment options. Cancer immunotherapy represents the ultimate form of personalized medicine by leveraging the specificity and potency of a patient’s immune system to kill their tumor. The thyroid cancer microenvironment is rich in immunological cells, making it a reasonable candidate for immunotherapy. This review maps out the immunological features of thyroid cancers and how these can be modulated. There are surprising immunological consequences of conventional therapies that demand attention. Also, hormonal modulation of the immune system is highlighted as a unique and confounding feature of thyroid cancers. A variety of cutting-edge immune-based therapies are discussed, with an emphasis placed on how these can be integrated with the current standard of care. Several high priority areas in need of research are also highlighted.


2021 ◽  
Vol 37 (2) ◽  
pp. 1-9
Author(s):  
Seonyoung Min ◽  
Hyunseok Kang

Thyroid cancer refers to various cancers arising from thyroid gland. Differentiated thyroid cancers (DTCs) include papillary, follicular, and Hurthle cell carcinomas and represent cancers retain normal thyroid functions such as iodine uptake. Radioactive iodine (RAI) is generally used for upfront treatment of metastatic DTCs, but RAI refractory DTCs remain to be clinical challenges. Sorafenib and lenvatinib were approved for the treatment of RAI refractory DTCs and more recently, genomics-based targeted therapies have been developed for NTRK and RET gene fusion-positive DTCs. Poorly differentiated and anaplastic thyroid cancers (ATCs) are extremely challenging diseases with aggressive courses. BRAF/MEK inhibition has been proven to be highly effective in BRAF V600E mutation-positive ATCs and immune checkpoint inhibitors have shown promising activities. Medullary thyroid cancers, which arise from parafollicular cells of thyroid, represent a unique subset of thyroid cancer and mainly driven by RET mutation. In addition to vandetanib and cabozantinib, highly specific RET inhibitors such as selpercatinib and pralsetinib have demonstrated impressive activity and are in clinical use.


2017 ◽  
Vol 22 (02) ◽  
pp. 167-170 ◽  
Author(s):  
Haissan Iftikhar ◽  
Mubasher Ikram ◽  
Adnan Muhammad ◽  
Karim Nathani

Introduction The rates of thyroid cancers are on a rise, especially well-differentiated thyroid cancers. This could be partly due to newer diagnostic modalities, like high-resolution ultrasound, that can pick up smaller lesions. Differentiated thyroid cancers with distant metastases are not common, and even rarer is the initial presentation with complaints not related to the neck. Objectives The objective of this series was to study and report the unusual cases of patients with differentiated thyroid cancer with distant metastasis. There is a lack of data in the literature on these cases, and due to the rarity of such metastases, no definite treatment protocol has been defined. Methods A retrospective chart review of 1,200 cases of thyroid surgeries was performed. A total of 10 cases of well-differentiated thyroid cancer on the final histopathology exam that had initially presented with usual complaints to departments other than the Otolaryngology Department were identified. Results A total of 6 patients had papillary carcinoma, whereas 4 patients had follicular carcinoma on final the histopathology exam. Two patients presented with iliac crest lesions, 2 with vertebral lesions one each with parapharyngeal mass, supraclavicular mass, labia majora swelling and bleeding, lung, rib and neck of femur lesion. Conclusion There are still no specific guidelines on how to address these patients with differentiated thyroid cancer with distant metastasis (except for the cases of bone and lung lesions) and on which treatment should be offered in case of recurrence. More studies on the subject are required.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Naifa Lamki Busaidy ◽  
Maria E. Cabanillas

Differentiated thyroid carcinoma (papillary and follicular) has a favorable prognosis with an 85% 10-year survival. The patients that recur often require surgery and further radioactive iodine to render them disease-free. Five percent of thyroid cancer patients, however, will eventually succumb to their disease. Metastatic thyroid cancer is treated with radioactive iodine if the metastases are radioiodine avid. Cytotoxic chemotherapies for advanced or metastatic noniodine avid thyroid cancers show no prolonged responses and in general have fallen out of favor. Novel targeted therapies have recently been discovered that have given rise to clinical trials for thyroid cancer. Newer aberrations in molecular pathways and oncogenic mutations in thyroid cancer together with the role of angiogenesis in tumor growth have been central to these discoveries. This paper will focus on the management and treatment of metastatic differentiated thyroid cancers that do not take up radioactive iodine.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2775
Author(s):  
Assunta Melaccio ◽  
Lucia Ilaria Sgaramella ◽  
Alessandro Pasculli ◽  
Giovanna Di Meo ◽  
Angela Gurrado ◽  
...  

Thyroid cancer is the most common endocrine malignancy, with a typically favorable prognosis following standard treatments, such as surgical resection and radioiodine therapy. A subset of thyroid cancers progress to refractory/metastatic disease. Understanding how the tumor microenvironment is transformed into an angiogenic microenvironment has a role of primary importance in the aggressive behavior of these neoplasms. During tumor growth and progression, angiogenesis represents a deregulated biological process, and the angiogenic switch, characterized by the formation of new vessels, induces tumor cell proliferation, local invasion, and hematogenous metastases. This evidence has propelled the scientific community’s effort to study a number of molecular pathways (proliferation, cell cycle control, and angiogenic processes), identifying mediators that may represent viable targets for new anticancer treatments. Herein, we sought to review angiogenesis in thyroid cancer and the potential role of proangiogenic cytokines for risk stratification of patients. We also present the current status of treatment of advanced differentiated, medullary, and poorly differentiated thyroid cancers with multiple tyrosine kinase inhibitors, based on the rationale of angiogenesis as a potential therapeutic target.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junguee Lee ◽  
Ki Cheol Park ◽  
Hae Joung Sul ◽  
Hyun Jung Hong ◽  
Kun-Ho Kim ◽  
...  

AbstractThe primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto’s thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.


2013 ◽  
Vol 20 (4) ◽  
pp. 603-610 ◽  
Author(s):  
Xiaoli Liu ◽  
Justin Bishop ◽  
Yuan Shan ◽  
Sara Pai ◽  
Dingxie Liu ◽  
...  

Mutations 1 295 228 C>T and 1 295 250 C>T (termed C228T and C250T respectively), corresponding to −124 C>T and −146 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, have recently been reported in human cancers, but not in thyroid cancers yet. We explored these mutations in thyroid cancers by genomic sequencing of a large number of primary tumor samples. We found the C228T mutation in 0 of 85 (0.0%) benign thyroid tumors, 30 of 257 (11.7%) papillary thyroid cancers (PTC), 9 of 79 (11.4%) follicular thyroid cancers (FTC), 3 of 8 (37.5%) poorly differentiated thyroid cancers (PDTC), 23 of 54 (42.6%) anaplastic thyroid cancers (ATC), and 8 of 12 (66.7%) thyroid cancer cell lines. The C250T mutation was uncommon, but mutually exclusive with the C228T mutation, and the two mutations were collectively found in 11 of 79 (13.9%) FTC, 25 of 54 (46.3%) ATC, and 11 of 12 (91.7%) thyroid cancer cell lines. Among PTC variants, the C228T mutation was found in 4 of 13 (30.8%) tall-cell PTC (TCPTC), 23 of 187 (12.3%) conventional PTC, and 2 of 56 (3.6%) follicular variant PTC samples. No TERT mutation was found in 16 medullary thyroid cancer samples. The C228T mutation was associated with the BRAF V600E mutation in PTC, being present in 19 of 104 (18.3%) BRAF mutation-positive PTC vs 11 of 153 (7.2%) the BRAF mutation-negative PTC samples (P=0.0094). Conversely, BRAF mutation was found in 19 of 30 (63.3%) C228T mutation-positive PTC vs 85 of 227 (37.4%) C228T mutation-negative PTC samples (P=0.0094). We thus for the first time, to our knowledge, demonstrate TERT promoter mutations in thyroid cancers, that are particularly prevalent in the aggressive thyroid cancers TCPTC, PDTC, ATC and BRAF mutation-positive PTC, revealing a novel genetic background for thyroid cancers.


Sign in / Sign up

Export Citation Format

Share Document