scholarly journals Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp.

Author(s):  
Parviz Heidari ◽  
Antonio Panico

The use of bacterial strains as agents in bioremediation processes could reduce the harmfulness of potential toxic elements (PTEs) from water and soil with low or even no impact on the natural ecosystems. In this study, two new metal resistant-bacterial strains (Q3 and Q5) of Bacillus sp. were isolated from a sulfurous spring and their potential (as pure cultures or mixed) to remove Pb(II) and Cd(II) from an aqueous matrix was evaluated and optimized using response surface methodology (RSM). The optimal conditions for Cd(II) removal from all tested strains combinations were observed at an initial pH 5, a temperature of 38 °C, and an initial Cd(II) concentration of 50 mg L−1, while the performance of bacterial strains on Pb(II) removal was strongly correlated to initial pH and temperature conditions. Moreover, the efficiency of bacterial strains in removing both PTEs, Pb(II) and Cd(II), from an aqueous matrix was considerably higher when they were used as a mixed culture rather than pure. According to field emission SEM (FESEM) and EDS analysis, the two bacterial strains showed different mechanisms in removing Cd(II): Bacillus sp. Q5 bio-accumulated Cd(II) in its periplasmic space, whereas Bacillus sp. Q3 bio-accumulated Cd(II) on its cell surface. On the other hand, Pb(II) is removed by chemical precipitation (lead sulfide) induced by both Bacillus sp. Q3 and Q5. This study discloses new aspects of Pb(II) and Cd(II) bioremediation mechanisms in Bacillus species that can be extremely useful for designing and operating novel PTEs bioremediation processes.

2009 ◽  
Vol 71-73 ◽  
pp. 637-640 ◽  
Author(s):  
J. Sánchez Dávila ◽  
J. Hurtado Custodio

The aim of this research was the selection of bacterial strains resistant to mercury, as well as to demonstrate their capacity to reduce mercury in solution when they are inoculated in pure and mixed cultures. Samples of soil from informal mining gold sites in Peru were collected and fifteen mercury resistant bacteria were isolated. Strains RM6, RM7, RM9, RM11, RM12 and RM13 were selected for their capacity to reduce mercury in solution. The six bacterial strains belong to the genus Pseudomonas. Inoculated in pure cultures, these strains reduce mercury in solution although in different percentages: RM9, RM11 an RM12 reduce 93% to 97% of the mercury, while strains RM6, RM7 y RM13 reduce 80% to 85%. The consortium of all six bacterial strains showed a mercury reduction of 84%. Approximately 91% of mercury in solution was reduced in 1 hour and this reaction was not associated to bacterial growth. Using specific primers, the merA gene was amplified from genomic DNA of the bacterial strains, which would suggest the activity of the mer operon as a mechanism of mercury resistance. Due to their ability to reduce mercury in solution, it is advisable to carry out more research on the selected strains since they could be useful in future bioremediation processes.


2021 ◽  
Vol 11 (21) ◽  
pp. 10492
Author(s):  
Hakima A. Althalb ◽  
Izzeddin M. Elmusrati ◽  
Ibrahim M. Banat

The high viscosity and low flow properties of some crude oil make them difficult to extract from oil reservoirs. This study investigated the mechanisms responsible for the enhancement of oil recovery using fractured dolomite core models. Bacterial strains, Nocardia cyriacigeorgica, Bacillus species, and Pseudomonasputida, isolated from Libyan oil fields, had the ability to biotransform heavy crude oil by reducing its viscosity and converting heavier components into lighter ones. The efficiencies of the three bacterial strains were assessed using sand-packed column experiments through the injection of bacteria to mimic in-situ oil recovery. The optimum biotransformation values of Libyan Bouri crude oil were determined as 77.1, 61.2, and 61.1% using the Bacillus sp., P. putida, and Nocardia cyriacigeorgica, respectively, at 55 °C. Viscosity analyses showed that these strains resulted in the reduction of the viscosity of the crude oil at two different temperatures of 37 and 55 °C. The highest recovery of residual oil was about 11.3% using Bacillus sp. The study confirmed that the selected bacterial species were capable of displacing additional oil under simulated oil field conditions.


2019 ◽  
Vol 17 ◽  
Author(s):  
Farzane Kargar ◽  
Mojtaba Mortazavi ◽  
Mahmood Maleki ◽  
Masoud Torkzadeh Mahani ◽  
Younes Ghasemi ◽  
...  

Aims: The purpose of this study was to screen the bacteria producing cellulase enzymes and their bioinformatics studies. Background: Cellulose is a long-chain polymer of glucose that hydrolyzes by cellulases to glucose molecules. In order to design the new biotechnological applications, some strategies have been used as increasing the efficiency of enzyme production, generating cost-effective enzymes, producing stable enzymes and identification of new strains. Objective: On the other hand, some bacteria special features have made them suitable candidates for the identification of the new source of enzymes. In this regard, some native strains of bacteria were screened. Method: These bacteria were grown on a culture containing the liquid M9 media containing CMC to ensure the synthesis of cellulase. The formation of a clear area in the culture medium indicated decomposition of cellulose. In the following, the DNA of these bacteria were extracted and their 16S rDNA genes were amplified. Result: The results show that nine samples were able to synthesize cellulase. In following, these strains were identified using 16S rDNA. The results show that these screened bacteria belonged to the Bacillus sp., Alcaligenes sp., Alcaligenes sp., and Enterobacter sp.conclusionThe enzyme activity analysis shows that the Bacillus toyonensis, Bacillus sp. strain XA15-411 Bacillus cereus have produced the maximum yield of cellulases. However, these amounts of enzyme production in these samples are not proportional to their growth rate. As the bacterial growth chart within 4 consecutive days shows that the Alcaligenes sp. Bacillus cereus, Bacillus toyonensis, Bacillus sp. strain XA15-411 have a maximum growth rate. The study of the phylogenetic tree also shows that Bacillus species are more abundant in the production of cellulase enzyme. These bioinformatics analyses show that the Bacillus species have different evolutionary relationships and evolved in different evolutionary time. Other: However, for maximum cellulase production by this bacteria, some information as optimum temperature, optimum pH, carbon and nitrogen sources are needed for the ideal formulation of media composition. The cellulase production is closely controlled in microorganisms and the cellulase yields appear to depend on a variety of factors. However, the further studies are needed for cloning, purification and application of these new microbial cellulases in the different commercial fields as in food, detergent, and pharmaceutical, paper, textile industries and also various chemical industries. However, these novel enzymes can be further engineered through rational design or using random mutagenesis techniques.


2019 ◽  
Vol 20 (15) ◽  
pp. 3661 ◽  
Author(s):  
Sascha Patz ◽  
Katja Witzel ◽  
Ann-Christin Scherwinski ◽  
Silke Ruppel

The plant phyllosphere is colonized by a complex ecosystem of microorganisms. Leaves of raw eaten vegetables and herbs are habitats for bacteria important not only to the host plant, but also to human health when ingested via meals. The aim of the current study was to determine the presence of putative probiotic bacteria in the phyllosphere of raw eaten produce. Quantification of bifidobacteria showed that leaves of Lepidium sativum L., Cichorium endivia L., and Thymus vulgaris L. harbor between 103 and 106 DNA copies per gram fresh weight. Total cultivable bacteria in the phyllosphere of those three plant species ranged from 105 to 108 CFU per gram fresh weight. Specific enrichment of probiotic lactic acid bacteria from C. endivia, T. vulgaris, Trigonella foenum-graecum L., Coriandrum sativum L., and Petroselinum crispum L. led to the isolation of 155 bacterial strains, which were identified as Pediococcus pentosaceus, Enterococcus faecium, and Bacillus species, based on their intact protein pattern. A comprehensive community analysis of the L. sativum leaves by PhyloChip hybridization revealed the presence of genera Bifidobacterium, Lactobacillus, and Streptococcus. Our results demonstrate that the phyllosphere of raw eaten produce has to be considered as a substantial source of probiotic bacteria and point to the development of vegetables and herbs with added probiotic value.


2021 ◽  
Vol 22 (4) ◽  
pp. 2178
Author(s):  
Katarzyna Turnau ◽  
Edyta Fiałkowska ◽  
Rafał Ważny ◽  
Piotr Rozpądek ◽  
Grzegorz Tylko ◽  
...  

Our observations of predatory fungi trapping rotifers in activated sludge and laboratory culture allowed us to discover a complicated trophic network that includes predatory fungi armed with bacteria and bacteriophages and the rotifers they prey on. Such a network seems to be common in various habitats, although it remains mostly unknown due to its microscopic size. In this study, we isolated and identified fungi and bacteria from activated sludge. We also noticed abundant, virus-like particles in the environment. The fungus developed absorptive hyphae within the prey. The bacteria showed the ability to enter and exit from the hyphae (e.g., from the traps into the caught prey). Our observations indicate that the bacteria and the fungus share nutrients obtained from the rotifer. To narrow the range of bacterial strains isolated from the mycelium, the effects of bacteria supernatants and lysed bacteria were studied. Bacteria isolated from the fungus were capable of immobilizing the rotifer. The strongest negative effect on rotifer mobility was shown by a mixture of Bacillus sp. and Stenotrophomonas maltophilia. The involvement of bacteriophages in rotifer hunting was demonstrated based on molecular analyses and was discussed. The described case seems to be an extraordinary quadruple microbiological puzzle that has not been described and is still far from being understood.


2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.


Author(s):  
Rim Abdel Samad ◽  
Zulfa Al Disi ◽  
Mohammad Ashfaq ◽  
Nabil Zouari

Occurrence of mineral forming and other bacteria in mats is well demonstrated. However, their high diversity shown by ribotyping was not explained, although it could explain the diversity of formed minerals. Common biomarkers as well as phylogenic relationships are useful tools to clustering the isolates and predict their potential role in the natural niche. In this study, combination of MALDI-TOF MS with PCA was shown a powerful tool to categorize 35 mineral forming bacterial strains isolated from Dohat Fshaikh sabkha, at northwest of Qatar (23 from decaying mats and 12 from living ones). 23 strains from decaying mats belong to Virgibacillus genus as identified by ribotyping and are shown highly involved in formation of protodolomite and a diversity of minerals. They were used as internal references in categorization of sabkha bacteria. Combination of isolation of bacteria on selective mineral forming media, their MALDI TOF MS protein profiling and PCA analysis established their relationship in a phyloproteomic based on protein biomarkers including m/z 4905, 3265, 5240, 6430, 7765, and 9815. PCA analysis clustered the studied strains into 3 major clusters, showing strong correspondence to the 3 phyloproteiomic groups that were established by the dendrogram. Both clustering analysis means have evidently demonstrated a relationship between known Virgibacillus strains and other related bacteria based on profiling of their synthesized proteins. Thus, larger populations of bacteria in mats can be easily screened for their potential to exhibit certain activities, which is of ecological, environmental and biotechnological significance.


2018 ◽  
Vol 25 (03) ◽  
pp. 80-89
Author(s):  
Naranchimeg B ◽  
Altantsetseg Kh ◽  
Urantulkhuur B

Amylase is one of the most widely used enzymes in many industrial sectors (starch decomposition, bakery, fermentation, biofuel, detergent, paper, textile, etc.), thus isolating pure cultures of amylase producing microorganisms from natural sources and improving their activity is important in biotechnology. Enzyme preparations with high activity can be obtained only by improved synthesis of biologically active substances of microorganisms by mutagenesis. In the present investigation was enhanced the amylase productivity of some Bacillus sp. (assigned as 1,2,3) isolated from soil sample by substrate induction and mutagenesis. 3 isolates are subcultured in the medium with starch (10 mg/ml) as only carbon source, to improve amylase production. Enzyme activity of parental strains increased 50-58% by substrate induction. The highest productive strain (Bacillus sp. 2) screened and selected. Then it was subjected to 4 period mutagenesis using UV irradiation and еthidium bromide. Amylase activity of Bacillus sp. 2 increased after first period of mutagenesis to:0.305,  second:0.514, third:0.579 and fourth:0.592 U/ml. In the result our experiment, amylase activity of parental strain increased from 0.138 to 0.592 U/ml, which means 4.3 times more enzyme. Амилаза нийлэгжүүлэгч бактерийн мутант омог гарган авсан дүн Хураангуй: Амилаза нь үйлдвэрлэлийн олон салбарт (цардуул задлах, талх нарийн боов, исгэлт, биотүлш, угаалгын нунтаг, цаас, нэхмэл гэх мэт) өргөнөөр хэрэглэгддэг фермент тул түүнийг нийлэгжүүлэгч бичил биетний өсгөврийг байгалийн эх үүсвэрээс ялган авч, идэвхийг нь сайжруулах явдал биотехнологийн салбарт чухал ач холбогдолтой юм. Мутагенезийн аргаар бичил биетний биологийн идэвхтэй бодисын нийлэгжилтийг сайжруулснаар ферментийн бэлдмэл гарган авах боломжтой болно. Судалгаагаар Монгол орны биосферээс ялган авсан цардуул задлах идэвхтэй бактерийн цэвэр өсгөврийн амилаза ферментийн идэвхийг субстратаар өдөөх болон мутагенезийн аргаар сайжруулахыг зорив. Хөрснөөс ялган авсан цардуул задлах идэвхтэй цэвэр өсгөврүүдийг (Bacillus sp. 1, 2, 3) нүүрс-усны эх үүсвэрээр зөвхөн цардуул агуулсан (10 г/л) тэжээлт орчинд өсгөвөрлөх замаар амилаза ферментийн идэвхийг нэмэгдүүлэх туршилт хийж үр дүнг үндэслэн хамгийн идэвхтэй нэг өсгөврийг сонгон шалгаруулж, хэт ягаан туяа, этидиум бромид, хэт ягаан туяа, этидиум бромид гэсэн дарааллаар зориудын мутагенезид 4 үе шаттайгаар оруулав. Субстратаар өдөөхөд бактерийн амилаза ферментийн идэвх анхдагч өсгөврийнхөөс 50-58 хувиар нэмэгдсэн. Bacillus sp. 2 өсгөврийг сонгон шалгаруулж, мутагенезид оруулахад амилаза ферментийн идэвх нь I шатны мутагенезээр:0,305, II-оор:0,514, III-аар:0,579, IV-өөр:0,592 н/мл болж нэмэгдэв. Бидний судалгааны үр дүнд байгалийн анхдагч өсгөврийн (Bacillus sp. 2) амилаза ферментийн идэвх 0,138-аас 0,592 н/мл хүртэл буюу 4,3 дахин нэмэгдсэн байна. Түлхүүр үг: амилаза, Bacillus sp., субстратын өдөөлт, UV-мутагенез, EtBr- мутангенез


2011 ◽  
Vol 12 (2) ◽  
pp. 155-184 ◽  
Author(s):  
Amro Abd al fattah Amara

ABSTRACT: Bacillus species are able to produce PHB, Proteases and Lipases. Bacillus subtilius, Bacillus pumilus, Bacillus therigienesis and Bacillus sp. were used. Plackett-Burman, Box-Behnken design and the Excel solver were used to optimize the production. The statistical analysis of the results proved insignificant relationship between the media compositions and the responses. The results clearly proved a competition between the production of PHB, Proteases and Lipases. Meanwhile systematic experimental design succeeded to minimize this competition. The maximum gained PHB in this study were 16.48 g/l/48 hr. In case of Proteases and Lipases were 534, and 22.56 Units/ml/48 h respectively. The strategies used in this study are recommended for simultaneous production of PHB and proteases. For some extend lipases produced too.


2019 ◽  
Vol 11 (1) ◽  
pp. 134-137 ◽  
Author(s):  
Kannan D ◽  
Renuga Devi ◽  
A. G. Murugesan ◽  
S. Rajan

Textile industries releasing large amount of effluent which contains textile dyes and toxic chemicals and it is one of the major source of pollution also contaminating water bodies. To remove that, bacteria have been of great attention because of their ability to treat effluent. The present study was undertaken to exploit the ability of Pseudomonassp and Bacillus sp from dye contaminated soil samples for bioremediation for dye effluent. Among the bacterial strains used in the study. Pseudomonas sp emerged out to be most potent decolorizer in comparison to Bacillus sp with the degree of decolorization of 90.0 %. Thus, it was concluded that the Pseudomonas sp had highest color removing capacity from contaminated effluent soil samples. 


Sign in / Sign up

Export Citation Format

Share Document