scholarly journals A Continuous Taxi Pickup Path Recommendation under The Carbon Neutrality Context

2021 ◽  
Vol 10 (12) ◽  
pp. 821
Author(s):  
Mengmeng Chang ◽  
Yuanying Chi ◽  
Zhiming Ding ◽  
Jing Tian ◽  
Yuhao Zheng

In the context of the carbon neutrality target, carbon reduction in the daily operation of the transportation system is more important than that in productive activities. There are few travel services that can quantify low-carbon travel, with a lack of effective low-carbon travel tools to guide transportation behavior. On-demand access to taxi services can effectively reduce the additional carbon emissions caused by cruising, which in turn increases efficiency in urban mobility with a reduced taxi fleet scale. For individual taxis, they lack macroscopic horizon in their choice of passenger pickup paths. The selected travel path based on personal operational experience or real-time location is limited by local optimization when making path decisions. In this work, we proposed a macro-path recommendation method to assist the taxi pickup path selection to accelerate the transformation of the taxi system towards low-carbon sharing. First, an adaptive learning spatiotemporal neural network was used to predict the coarse-grained distribution of potential trips. Next, the trajectory sharing graph was constructed based on the potential trips distribution to reallocate the taxi orders for the continuous pickup path optimization. As a result, the continuous pickup path balanced the relation between travel demands and taxi supply, improving the economic and environmental benefits of taxi operation and contributing to the goal of carbon neutrality. We conducted experiments on the Chengdu city ride-hailing dataset. Compared with the current status of taxi operations, the solution shows improvements in both the scale of taxi services and order gain.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2408
Author(s):  
Anissa Nurdiawati ◽  
Frauke Urban

Industries account for about 30% of total final energy consumption worldwide and about 20% of global CO2 emissions. While transitions towards renewable energy have occurred in many parts of the world in the energy sectors, the industrial sectors have been lagging behind. Decarbonising the energy-intensive industrial sectors is however important for mitigating emissions leading to climate change. This paper analyses various technological trajectories and key policies for decarbonising energy-intensive industries: steel, mining and minerals, cement, pulp and paper and refinery. Electrification, fuel switching to low carbon fuels together with technological breakthroughs such as fossil-free steel production and CCS are required to bring emissions from energy-intensive industry down to net-zero. A long-term credible carbon price, support for technological development in various parts of the innovation chain, policies for creating markets for low-carbon materials and the right condition for electrification and increased use of biofuels will be essential for a successful transition towards carbon neutrality. The study focuses on Sweden as a reference case, as it is one of the most advanced countries in the decarbonisation of industries. The paper concludes that it may be technically feasible to deep decarbonise energy-intensive industries by 2045, given financial and political support.


2021 ◽  
Vol 67 (2) ◽  
pp. 205-227
Author(s):  
Marilyn A. Brown ◽  
Blair Beasley ◽  
Fikret Atalay ◽  
Kim M. Cobb ◽  
Puneet Dwiveldi ◽  
...  

AbstractSubnational entities are recognizing the need to systematically examine options for reducing their carbon footprints. However, few robust and comprehensive analyses are available that lay out how US states and regions can most effectively contribute. This paper describes an approach developed for Georgia—a state in the southeastern United States called “Drawdown Georgia”, our research involves (1) understanding Georgia’s baseline carbon footprint and trends, (2) identifying the universe of Georgia-specific carbon-reduction solutions that could be impactful by 2030, (3) estimating the greenhouse gas reduction potential of these high-impact 2030 solutions for Georgia, and (4) estimating associated costs and benefits while also considering how the solutions might impact societal priorities, such as economic development opportunities, public health, environmental benefits, and equity. We began by examining the global solutions identified by Project Drawdown. The resulting 20 high-impact 2030 solutions provide a strategy for reducing Georgia’s carbon footprint in the next decade using market-ready technologies and practices and including negative emission solutions. This paper describes our systematic and replicable process and ends with a discussion of its strengths, weaknesses, and planned future research.


Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


2013 ◽  
Vol 409-410 ◽  
pp. 660-663
Author(s):  
Xiao Wei Wu

the development of low carbon building is not only the requirement of current economic transition,it is also the realistic choice to implement Scientific Development Concept and to build "two type society". This paper briefly describes the connotation of low carbon buildings , and then illustrates the low-carbon economy background, the necessity of low carbon building development, and finally put forward the corresponding path selection.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhaoyang Zhao ◽  
Chong Ye

“Fast fashion” represents a short product life cycle, and international SPA enterprises are therefore criticised as representatives of high energy consumption, pollution, and emissions, which is contrary to China’s goal of achieving carbon neutrality. In the context of China’s shift to a low-carbon economic development model, how should SPA enterprises breakthrough in the face of China’s large-scale market advantage and domestic demand potential? Based on the statistics of 277 prefecture-level cities from 2010 to 2018, this article selects 5 leading international SPA enterprises and uses the difference-in-differences (DID) method to explore the impact of low-carbon initiative on the location expansion of international SPA enterprises. The results suggest that the quantity of location expansions of SPA enterprises in the pilot cities is significantly lower by approximately 0.418 units compared with the nonpilot cities, implying that the low-carbon initiative has a significant inhibitory effect on the location expansion of SPA enterprises. After a series of robustness tests, the conclusion is valid. The results of the heterogeneity test suggest that the suppression effect is mainly found in the subsample of central cities and cities with medium and low levels of economic development. This article proposes that SPA enterprises should reduce their carbon emissions and gradually explore a green and sustainable development path.


2019 ◽  
Author(s):  
Robin Hoeven ◽  
John M. X. Hughes ◽  
Mohamed Amer ◽  
Emilia Z. Wojcik ◽  
Shirley Tait ◽  
...  

AbstractLiquefied Petroleum Gas (LPG) is a major domestic and transport fuel. Its combustion lessens NOx, greenhouse gas and particulates emissions compared to other fuels. Propane – the major constituent of LPG – is a clean, high value ‘drop-in’ fuel that can help governments develop integrated fuels and energy policies with low carbon burden, providing solutions to the multi-faceted challenges of future energy supply. We show that bio-LPG (bio-propane and bio-butane) can be produced by microbial conversion of waste volatile fatty acids that can be derived from anaerobic digestion, industrial waste, or CO2via photosynthesis. Bio-LPG production was achieved photo-catalytically, using biomass propagated from bioengineered bacteria includingE. coli, Halomonas(in non-sterile seawater), andSynechocystis(photosynthetic). These fuel generation routes could be implemented rapidly in advanced and developing nations of the world to meet energy needs, global carbon reduction targets and clean air directives.


Sign in / Sign up

Export Citation Format

Share Document