scholarly journals Pleiotropic Effects of Metformin on Cancer

2018 ◽  
Vol 19 (10) ◽  
pp. 2850 ◽  
Author(s):  
Hans-Juergen Schulten

Metformin (MTF) is a natural compound derived from the legume Galega officinalis. It is the first line antidiabetic drug for type 2 diabetes (T2D) treatment. One of its main antidiabetic effects results from the reduction of hepatic glucose release. First scientific evidence for the anticancer effects of MTF was found in animal research, published in 2001, and some years later a retrospective observational study provided evidence that linked MTF to reduced cancer risk in T2D patients. Its pleiotropic anticancer effects were studied in numerous in vitro and in vivo studies at the molecular and cellular level. Although the majority of these studies demonstrated that MTF is associated with certain anticancer properties, clinical studies and trials provided a mixed view on its beneficial anticancer effects. This review emphasizes the pleiotropic effects of MTF and recent progress made in MTF applications in basic, preclinical, and clinical cancer research.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3532
Author(s):  
Ibrahim M. El-Deeb ◽  
Valeria Pittala ◽  
Diab Eltayeb ◽  
Khaled Greish

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA–TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.


2020 ◽  
Vol 9 ◽  
pp. 1743
Author(s):  
Solmaz Rahmani Barouji ◽  
Amir Saber ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

raditional medicine (TM) that developed over the years within various societies consists of medical experimental knowledge and practices, which apply natural methods and compounds for general wellness and healing. Moomiaii as a pale-brown to blackish-brown natural exudate is one of the natural compounds in traditional medicine that has been used over 3000 years in many countries of the world especially in India, China, Russia, Iran, Mongolia, Kazakhstan and Kirgizstan. We reviewed all English-language studies about Moomiaii that we accessed them. In traditional medicine, many beneficial activities have been attributed to Moomiaii and to its main constituents, Humic acid and Fulvic acid, which are widely used to prevent and treatment of different diseases. Some modern scientific investigations showed that Moomiaii as a safe dietary supplement can be beneficial in various health complications. Even though the beneficial effects of Moomiaii have been confirmed in traditional and modern medicine, it seems that additional in-vitro/in-vivo studies and comprehensive clinical trials are necessary to explain the whole mechanisms of action and to determine the effective doses in various diseases. We discuss and clarify the claimed health beneficial effects of Moomiaii in some wide-spread diseases regarding its anti-ulcerogenic, immunomodulatory, antidiabetic, antioxidative and anticancer properties. [GMJ.2020;9:e1743]


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1203
Author(s):  
Gaber E. El-Desoky ◽  
Saikh M. Wabaidur ◽  
Mohamed A. Habila ◽  
Zeid A. AlOthman

In this study, the cellular synergistic and antagonistic effects of mixing tartrazine (TZ) with curcumin (CUR) or curcumin-nanoparticles (CUR-NPs) were investigated. The in vivo administration of TZ, CUR, CUR-NPs, and TZ mixed with CUR or CUR-NPs at 75:25 or 50:50 ratios were tested. The results indicated that CUR and CUR -NPs reduced the cytotoxicity effects of TZ on skin fibroblast BJ-1 (ATCC® CRL-2522™) normal cells. However, among the tested materials, CUR-NPs had highest in vitro and in vivo antioxidant activity compared to TZ. Furthermore, CUR-NPs and CUR exhibited anticancer activity against HepG-2 liver cancer cells via apoptosis induction. The key apoptosis protein genes Caspase-3, p53, and Bax were upregulated, whereas Bc-2, which exhibits anti-apoptosis activity, was downregulated. Our results indicated that the nano-formulation of CUR alters its physicochemical properties, including the size and shape, and increases its antioxidant and anticancer properties. CUR-NPs also overcome the side effect of using TZ as a yellow color and food preservative additive, due to its reduced toxicity, oxidative stress, and carcinogenicity. In agreement with our previous findings, CUR and CUR-NPs were able to protect against cellular oxidative stress by stimulating endogenous antioxidant defense enzymes, including superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione-S-transferase (GST). We conclude that the nano-formulation of CUR exhibits economic benefits as a new strategy to use CUR as a food additive at the cellular level.


Author(s):  
Anindita Ghosh ◽  
Chinmay Kumar Panda

: Bladder cancer carries a poor prognosis and has proven resistance to chemotherapy. Pentacyclic Triterpenoid Acids (PTAs) are natural bioactive compounds that have a well-known impact on cancer research because of their cytotoxic and chemopreventive activities. This review focuses on bladder cancer which can no longer be successfully treated by DNA damaging drugs. Unlike most of the existing drugs against bladder cancer, PTAs are non-toxic to normal cells. Collecting findings from both in vitro and in vivo studies, it has been concluded that PTAs may serve as promising agents in future bladder cancer therapy. In this review, the roles of various PTAs in bladder cancer have been explored, and their mechanisms of action in the treatment of bladder cancer have been described. Specific PTAs have been shortlisted from each of the chief skeletons of pentacyclic triterpenoids, which could be effective against bladder cancer because of their mode of action. This review thereby throws light on the multi targets and mechanisms of PTAs, which are responsible for their selective anticancer effects and provides guidelines for further research and development of new natural antitumor compounds.


2018 ◽  
Vol 18 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Didem Sohretoglu ◽  
Shile Huang

The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms.


2021 ◽  
Vol 12 (6) ◽  
pp. 52-59
Author(s):  
Rajeev Sati ◽  
Monika Bisht

Holmskioldia sanguinea Retz. is a Sub-Himalayan plant that has been cultivated in the Americas, Europe, Indo-china, Asia-Pacific, and Southern Africa. It has been used traditionally to treat rheumatism and rheumatoid arthritis, dysentery, headaches, hypertension, boils, blain, ulcers, and gynaecological problems, as well as a blood purifying concoction. The botanical description of the plant, its phytochemical constituents, and its pharmacological activities are discussed, with an emphasis on antibacterial, antihepatotoxic, antifungal, anti-inflammatory, antioxidant, antimicrobial, analgesic, central nervous system depressant, diuretic, oestrogenic, anti-implantation, and anticancer properties. Most pharmacological effects are a result of plant constituents such as alkaloids, terpenoids, tannins, flavonoids, glycosides and phenols, to name a few. Conventional wisdom should be confirmed through in vitro and in vivo studies, as well as clinical trials. Herb's anti-tumor and anti-cancer properties have generated significant interest.


2020 ◽  
Vol 14 (3) ◽  
pp. 2085-2091
Author(s):  
Kolli Guna Ranjan ◽  
Girija Sankar G. ◽  
D.V.V. Satyanarayana Raju

There is increasing scientific evidence and commercial interest for using probiotics for eliminating and handling of specific diseases. Probiotics can be evaluated for its role and performance against isolated pathogens from contaminating sources. The present work reports on invitro antimicrobial activity of commercial selected probiotics against pathogenic microbe Vibrio parahaemolyticus. The work also describes cytotoxic activities using MTT assay and adherence studies of selected probiotics. Results for the studies showed maximum zone of inhibition 13.66±0.46mm in probiotic enteroplus,12.33±0.93mm in lactobacillus (NCIM2056) and 10.66±0.93mm in Avant Bact. Cytotoxicity was expressed as IC50(µg/ml) values, observed on CaCO cell lines for different probiotics. Avant Bact showed a IC50 value of 104.7745, Lactobacillus (NCIM2056) a value of 58.13223 and Enteroplus a value of 50.09716. These values expressed different safety aspects of probiotics used for study. Finally the adherence study was done to check probiotic colonizing capacity. The probiotics showed varied adherence capacity against caco cell lines. Enteroplus has % adhesion of 10.25±0.74, Avant Bact. 7.25±0.82 and Lactobacillus (NCIM2056) 7.5±1.12. In conclusion antimicrobial results show importance of probiotics to be used against specific gastro intestinal diseases. Cytotoxicity determines safety aspects of probiotics and adherence study determines probiotic as a promising candidate for in vivo studies.


Author(s):  
Hasnain Farooq ◽  
Kaleem Ullah ◽  
Zunair Akmal ◽  
Amir Hussain Shahzad ◽  
Affifa Tajamma ◽  
...  

Probiotics have been the core area of study since last few decades due to their immense beneficial effects on human health. They are widely incorporated as a verity of products in food industry. Prebiotics are the commonly used fibers and when used in combination with probiotics are called as synbiotics, thus enhancing the probiotic activity. Several in vitro and in vivo studies have revealed the application of these microbiota management tool for the prevention and cure of diseases. Diarrhea prevention, atopiceczema, dental care, cancer therapy and treatment of bowel syndrome are the various health benefits provided by probiotic activity. These wonderful microorganisms have the enzymatic activity of breakdowning the food macromolecules, secretion of anti rnicrobial substances, anti-carcinogenicability, enhancing immune system, improved ability in producing short-chain fatty acid, anti atherogenicability, allergen regulation, anti-virulence activity, treatment of urinary tract infections and many more. In the light of this remarkable ongoing trend and the scientific evidence obtained on these microbiota, it is the need of hour to do further research on dose and optimal probiotic for specific diseases. This narrative review present the current documentation on enteric disease management stratagies and antivirulence studies focusing on quantum sensing inhibition, anti-toxin effects and anti-invasion effects.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 161 ◽  
Author(s):  
Terezia Kiskova ◽  
Peter Kubatka ◽  
Dietrich Büsselberg ◽  
Monika Kassayova

Despite intensive research, malignant brain tumors are among the most difficult to treat due to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood‒brain barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms, such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented promising results; however, further clinical research is necessary to prove the therapeutic efficacy of resveratrol in brain cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document