scholarly journals Quercitrin Nanocoated Implant Surfaces Reduce Osteoclast Activity In Vitro and In Vivo

2018 ◽  
Vol 19 (11) ◽  
pp. 3319 ◽  
Author(s):  
Alba Córdoba ◽  
Nahuel Manzanaro-Moreno ◽  
Carme Colom ◽  
Hans Rønold ◽  
Staale Lyngstadaas ◽  
...  

In this study, the effect on osteoclast activity in vitro and in vivo of titanium implants that were coated with quercitrin was evaluated. Titanium surfaces were covalently coated with the flavonoid quercitrin. The effect of the surfaces on osteoclastogenesis was first tested in vitro on RAW264.7 cells that were supplemented with receptor activator of nuclear factor kappa-B ligand (RANKL) to generate osteoclast-like cells by tartrate-resistant acid phosphatase (TRAP) inmunostaining after five days of culture, and by analysis of the mRNA expression levels of markers related to bone resorption after seven days of culture. A rabbit tibial model was used to evaluate the in vivo biological response to the implant surfaces after eight weeks of healing, analyzing the lactate dehydrogenase (LDH) and the alkaline phosphatase (ALP) activities in the wound fluid that were present at the implant interface and the peri-implant bone mRNA expression levels of several markers related to inflammation, bone resorption and osteoblast-osteoclast interaction. No differences between groups and control surfaces were found in the wound fluid analyses. Moreover, quercitrin implant surfaces significantly decreased the expression of osteoclast related genes in vitro (Trap, CalcR, Ctsk, H+ATPase, Mmp9) and in vivo (Ctsk, H+ATPase, Mmp9) as well as the expression of RankL in vivo. Moreover, quercitrin surfaces were not cytotoxic for the cells. Thus, quercitrin implant surfaces were biocompatible and decreased osteoclastogenesis in vitro and in vivo. This could be used to improve the performance of dental implants.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 619
Author(s):  
Hyun-Jung Park ◽  
Malihatosadat Gholam-Zadeh ◽  
Sun-Young Yoon ◽  
Jae-Hee Suh ◽  
Hye-Seon Choi

Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p–Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.


2000 ◽  
Vol 11 (10) ◽  
pp. 1857-1864
Author(s):  
L. SHANNON HOLLIDAY ◽  
STEPHEN L. GLUCK ◽  
EDUARDO SLATOPOLSKY ◽  
ALEX J. BROWN

Abstract. 1,25-Dihydroxy-19-nor-vitamin D2 (19-norD2), a new analog of 1,25(OH)2D3, suppresses parathyroid hormone in renal failure patients and in uremic rats but has less calcemic activity than 1,25(OH)2D3. Although 19-norD2 has high affinity for the vitamin D receptor and similar pharmacokinetics to those of 1,25(OH)2D3, it has much less bone resorbing activity in vivo. The intrinsic activity of 19-norD2 on osteoclastogenesis and activation of bone resorption in mouse bone marrow cultures was examined to determine the mechanism involved. 19-norD2 and 1,25(OH)2D3 (10 nM) were equivalent in stimulating the formation and maintenance of large multinucleated, tartrate-resistant acid phosphatase-positive cells. However, the amount of bone resorbed by osteoclasts stimulated by 10 nM 19-norD2, as measured by pit-forming assays, was reduced 62% compared with 10 nM 1,25(OH)2D3-stimulated osteoclasts (P < 0.05). This difference could not be attributed to enhanced catabolism or to downregulated vitamin D receptor. The rate of degradation of 19-norD2 in cultures was approximately 20% greater than 1,25(OH)2D3, not enough to account for the different effects on bone resorption. The VDR levels were identical in cultures that were treated with 19-norD2 and 1,25(OH)2D3. In summary, 19-norD2 is less effective than 1,25(OH)2D3 in stimulating mouse marrow osteoclasts to resorb bone. The reason for this difference is not clear but seems to involve the late maturation and/or activation of osteoclasts as the number of pits produced by each tartrate-resistant acid phosphatase-positive cell is reduced under stimulation by 19-norD2 compared with 1,25(OH)2D3.


2020 ◽  
Vol 45 (3) ◽  
pp. 391-406
Author(s):  
Nobuhiro Kanazawa ◽  
Masayuki Iyoda ◽  
Shohei Tachibana ◽  
Kei Matsumoto ◽  
Yukihiro Wada ◽  
...  

Background: Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. Methods: Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. Results: Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. Conclusions: Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yingkun Xu ◽  
Guangzhen Wu ◽  
Jiayao Zhang ◽  
Jianyi Li ◽  
Ningke Ruan ◽  
...  

Purpose. To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. Method. The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. Result. Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman’s grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. Conclusion. TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3481-3481
Author(s):  
Ajay Abraham ◽  
Savitha Varatharajan ◽  
Ashok kumar Jayavelu ◽  
Shaji R Velayudhan ◽  
Rayaz Ahmed ◽  
...  

Abstract Abstract 3481 Wide inter-individual variation in terms of treatment outcome and toxic side effects of treatment exist among patients with AML receiving chemotherapy with cytarabine (ara-C) and daunorubicin. The pre-requisite for the cytotoxic action of pro-drug Ara-C is the enzymatic conversion to its active tri-phosphorylated form ara-CTP. Many drug activating (Deoxycytidine kinase (dCK) and human Equilibrative Nucleoside Transporter 1 (hENT1) and deactivating (Cytidine deaminase (CDA), 5'nucleotidase (NT5C2) genes and ribonucleoside reductase (RRM1), which are involved in transport and biotransformation of cytarabine contribute to the variation in ara-C sensitivity in AML patients. FLT3-ITD and NPM1 mutations act as major poor and good prognostic markers respectively in cytogenetically normal AML. The effect of these mutations in ara-C metabolism remains to be elucidated. The present study aims to determine independent as well as the combined effect of ara-C metabolizing genes mRNA expression on in-vitro ara-C cytotoxicity and the role of FLT3-ITD and NPM mutations on mRNA expression of these genes. Diagnostic bone marrow sample (median blasts 65%; range 21 – 98%) from 98 adult patients with de novo AML (other than AML-M3) were included in this study. mRNA expression levels for each target gene relative to housekeeping gene GAPDH was analyzed using Taqman based gene expression assays. In vitro cytotoxicity was assessed using MTT cell viability assay and IC-50 was calculated. In vitro sensitivity or resistance was classified on the basis of the IC-50 values <6uM and >6uM ara-C respectively. FLT3 ITD and NPM mutation status at diagnosis were determined through PCR followed by Genescan analysis using genomic DNA samples. Type of NPM mutation was identified by sequencing. When ara-C IC-50 values were compared with the mRNA expression levels of these candidate genes, Ara-C sensitive samples (n= 30; IC-50 < 6uM) showed significantly higher mRNA expression of dCK and hENT1 compared to those with Ara-C resistance (n=51) IC50 >6uM (median 314 (61.56 – 1232) vs. 180 (31.87 – 749.2); p = 0.0004 and median 172.1 (44.12 – 657.6) vs. 96.19 (37.49 – 432.4), p= 0.0008 respectively. RRM1 and NT5C2 did not show any association with in vitro Ara-C cytotoxicity, while CDA showed a trend towards association with lower CDA expression in ara-C sensitive samples. Based on these findings we put forward Ara-C resistance index (RI). RI is calculated by the formula RI = ΔCT (dCK X ENT1)/ ΔCT CDA. (Smaller ΔCT value= higher mRNA expression). RI values were significantly higher in resistant (IC50 >6uM) compared to sensitive cells (median: 6.084; range 1.89–11.82) vs. 3.702 (1.89–9.80); p=<0.0001). This association should now be validated in an independent cohort. Effects of NPM and FLT3 mutation status on Ara-C metabolizing genes were then evaluated. No significant association was found between FLT3-ITD status and the mRNA expression of these candidate genes. Interestingly, dCK mRNA levels were significantly higher in samples with NPM mutation (n=39) compared to NPM wild type (n=59); median 272.3 (41.64–1232) vs. 188.6 (31.87–1030); p value= 0.01. When analysed separately, patients with NPM type A mutation (n=27) showed significantly higher dCK expression (median 347.4 (41.64–1232) vs. 188.6 (31.87–1030); p value= 0.003 compared to those with wild type NPM1. This first report showing an association between expression profiles of ara-C metabolizing genes and NPM mutation should form the basis for evaluating their clinical correlations. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaori Kato ◽  
Masato Tsutsui ◽  
Shingo Noguchi ◽  
Yukitoshi Iha ◽  
Keisuke Naito ◽  
...  

AbstractThe roles of endogenous nitric oxide (NO) derived from the entire NO synthases (NOSs) system have yet to be fully elucidated. We addressed this issue in mice in which all three NOS isoforms were deleted. Under basal conditions, the triple n/i/eNOSs−/− mice displayed significantly longer mean alveolar linear intercept length, increased alveolar destructive index, reduced lung elastic fiber content, lower lung field computed tomographic value, and greater end-expiratory lung volume as compared with wild-type (WT) mice. None of single NOS−/− or double NOSs−/− genotypes showed such features. These findings were observed in the triple n/i/eNOSs−/− mice as early as 4 weeks after birth. Cyclopaedic and quantitative comparisons of mRNA expression levels between the lungs of WT and triple n/i/eNOSs−/− mice by cap analysis of gene expression (CAGE) revealed that mRNA expression levels of three Wnt ligands and ten Wnt/β-catenin signaling components were significantly reduced in the lungs of triple n/i/eNOSs−/− mice. These results provide the first direct evidence that complete disruption of all three NOS genes results in spontaneous pulmonary emphysema in juvenile mice in vivo possibly through down-regulation of the Wnt/β-catenin signaling pathway, demonstrating a novel preventive role of the endogenous NO/NOS system in the occurrence of pulmonary emphysema.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5564-5564
Author(s):  
Kimiyoshi Sakaguchi ◽  
Hiroyoshi Takahashi

Abstract Introduction Advances in chemotherapy have improved the outcome of childhood acute lymphoblastic leukemia (ALL). However, leukemia cells in refractory ALL are often resistant to anti-leukemic agents. Although recent studies have focused on the epigenetic changes in refractory leukemia, the relationship between the demethylating agent 2′-deoxy-5-azacytidine (decitabine, DAC) and ALL remains unclear. Here, we examine the combined effects of DAC and anti-leukemic agents such as clofarabine (CLO) and etoposide (ETO) on the ALL cell line CCRF-CEM. Methods and results In vitro drug sensitivity was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. We cultured CCRF-CEM cells for 72 hours with or without DAC, and then removed DAC (when present) prior to culturing CCRF-CEM cells for 48 hours with ETO or CLO, or without chemotherapeutic drugs. After culturing for 48 hours, we removed the chemotherapeutic drugs and measured in vitro drug sensitivity using MTT assay. The MTT assay was performed in triplicate. We then evaluated the inhibitory concentration at 50% (IC50). IC50 for ETO, ETO+DAC, CLO, and CLO+DAC was 3.36, 0.625, 4.96, and 1.92, respectively. The combination Index (CI) was produced with Calcusyn® software, which uses the methodology of Chou and Talalay to perform formal synergy analyses. A CI < 1 indicated a synergistic effect. The CI was 0.026 for ETO+DAC and 0.431 for CLO+DAC. We assayed with Annexin-V, PI staining, and caspase-3/7 to detect apoptosis. We observed apoptosis rates of 31.6%, 53.3%, 31.2%, and 52.6% for ETO, ETO+DAC, CLO, and CLO+DAC, respectively. We observed greater caspase-3/7 activity with DAC+CLO and DAC+ETO than with CLO and ETO. Using real-time reverse transcription polymerase chain reaction (RT-qPCR) in CCRF-CEM cells, we examined mRNA expression levels for the pro-apoptotic genes BAK, BID, BAX, BAD, BIM, PUMA, ATM, TP53, and NOXA, as well as those for the anti-apoptotic genes BCL2, BCL2L1, and XIAP. The expression level of each target gene was calculated by normalizing it to the housekeeping gene GAPDH. The RT-qPCR was performed in triplicate. We used Student’s t test to compare the data. We observed DAC increased mRNA expression levels of BAX and NOXA, but decreased those for BAK, BID, PUMA, BCL2L1, ATM, TP53, and XIAP. We then analyzed the methylation status of pro- and anti-apoptotic genes after 48 hours incubation with or without DAC. Methylation status of BAK, NOXA, BCL2L1 and XIAP incubation with DAC was 1.3%, 3.3%, 2.5% and 72.9%, respectively. Methylation status of BAK, NOXA, BCL2L1 and XIAP incubation without DAC was 1.9%, 3.6%, 0.7% and 92.3%, respectively. There was no significant difference. Discussion Our results showed that DAC synergistically enhances CLO and ETO cytotoxicity, and this cytotoxic effect depends on caspase-3/7 activity. We examined mRNA expression levels of pro- and anti-apoptotic genes. We hypothesized that DAC would increase mRNA expression levels of most pro-apoptotic genes, and decrease mRNA levels of most anti-apoptotic genes. We found that DAC decreased some pro-apoptotic genes, such as BAK, BID, PUMA, ATM, and TP53, which disproves our hypothesis. Our present findings are similar to those of Shin et al., who reported that DAC decreased BID mRNA expression levels. However, they provided no explanation for this activity. Our results show that DAC did not demethylate the CpG of BAK, NOXA, BCL2L1, or XIAP. Thus, DAC must demethylate the CpG of other genes. Nevertheless, many genes are involved in apoptosis, and it remains unclear which genes are demethylated by DAC. Disclosures: Sakaguchi: Yakult Honsha Company: Research Funding; Japan Leukemia Research Fund: Research Funding; Japan Society for the Promotion of Science: Research Funding; Sanofi: Research Funding; Teijin Pharma: Research Funding.


2020 ◽  
Vol 23 (1) ◽  
pp. 117-126
Author(s):  
Melanie Reijrink ◽  
Stefanie A. de Boer ◽  
Ines F. Antunes ◽  
Daan S. Spoor ◽  
Hiddo J. L. Heerspink ◽  
...  

Abstract Purpose 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) uptake is a marker of metabolic activity and is therefore used to measure the inflammatory state of several tissues. This radionuclide marker is transported through the cell membrane via glucose transport proteins (GLUTs). The aim of this study is to investigate whether insulin resistance (IR) or inflammation plays a role in [18F]FDG uptake in adipose tissue (AT). Procedures This study consisted of an in vivo clinical part and an ex vivo mechanistic part. In the clinical part, [18F]FDG uptake in abdominal visceral AT (VAT) and subcutaneous AT (SAT) was determined using PET/CT imaging in 44 patients with early type 2 diabetes mellitus (T2DM) (age 63 [54–66] years, HbA1c [6.3 ± 0.4 %], HOMA-IR 5.1[3.1–8.5]). Plasma levels were measured with ELISA. In the mechanistic part, AT biopsies obtained from 8 patients were ex vivo incubated with [18F]FDG followed by autoradiography. Next, a qRT-PCR analysis was performed to determine GLUT and cytokine mRNA expression levels. Immunohistochemistry was performed to determine CD68+ macrophage infiltration and GLUT4 protein expression in AT. Results In vivo VAT [18F]FDG uptake in patients with T2DM was inversely correlated with HOMA-IR (r = − 0.32, p = 0.034), and positively related to adiponectin plasma levels (r = 0.43, p = 0.003). Ex vivo [18F]FDG uptake in VAT was not related to CD68+ macrophage infiltration, and IL-1ß and IL-6 mRNA expression levels. Ex vivo VAT [18F]FDG uptake was positively related to GLUT4 (r = 0.83, p = 0.042), inversely to GLUT3 (r = − 0.83, p = 0.042) and not related to GLUT1 mRNA expression levels. Conclusions In vivo [18F]FDG uptake in VAT from patients with T2DM is positively correlated with adiponectin levels and inversely with IR. Ex vivo [18F]FDG uptake in AT is associated with GLUT4 expression but not with pro-inflammatory markers. The effect of IR should be taken into account when interpreting data of [18F]FDG uptake as a marker for AT inflammation.


2020 ◽  
Vol 21 (17) ◽  
pp. 6368
Author(s):  
Anaïs M. J. Møller ◽  
Jean-Marie Delaissé ◽  
Jacob B. Olesen ◽  
Luisa M. Canto ◽  
Silvia R. Rogatto ◽  
...  

It is well established that multinucleation is central for osteoclastic bone resorption. However, our knowledge on the mechanisms regulating how many nuclei an osteoclast will have is limited. The objective of this study was to investigate donor-related variations in the fusion potential of in vitro-generated osteoclasts. Therefore, CD14+ monocytes were isolated from 49 healthy female donors. Donor demographics were compared to the in vivo bone biomarker levels and their monocytes’ ability to differentiate into osteoclasts, showing that: (1) C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels increase with age, (2) the number of nuclei per osteoclast in vitro increases with age, and (3) there is a positive correlation between the number of nuclei per osteoclast in vitro and CTX levels in vivo. Furthermore, the expression levels of the gene encoding dendritic cell-specific transmembrane protein (DCSTAMP) of osteoclasts in vitro correlated positively with the number of nuclei per osteoclast, CTX levels in vivo, and donor age. Our results furthermore suggest that these changes in gene expression may be mediated through age-related changes in DNA methylation levels. We conclude that both intrinsic factors and age-induced increase in fusion potential of osteoclasts could be contributing factors for the enhanced bone resorption in vivo, possibly caused by increased expression levels of DCSTAMP.


2021 ◽  
Vol 22 (15) ◽  
pp. 8225
Author(s):  
Ko Eun Lee ◽  
Mijeong Jeon ◽  
Seunghan Mo ◽  
Hyo-Seol Lee ◽  
Je Seon Song ◽  
...  

Replacement and inflammatory resorption are serious complications associated with the delayed replantation of avulsed teeth. In this study, we aimed to assess whether deferoxamine (DFO) can suppress inflammation and osteoclastogenesis in vitro and attenuate inflammation and bone resorption in a replanted rat tooth model. Cell viability and inflammation were evaluated in RAW264.7 cells. Osteoclastogenesis was confirmed by tartrate-resistant acid phosphatase staining, reactive oxygen species (ROS) measurement, and quantitative reverse transcriptase–polymerase chain reaction in teeth exposed to different concentrations of DFO. In vivo, molars of 31 six-week-old male Sprague–Dawley rats were extracted and stored in saline (n = 10) or DFO solution (n = 21) before replantation. Micro-computed tomography (micro-CT) imaging and histological analysis were performed to evaluate inflammation and root and alveolar bone resorption. DFO downregulated the genes related to inflammation and osteoclastogenesis. DFO also reduced ROS production and regulated specific pathways. Furthermore, the results of the micro-CT and histological analyses provided evidence of the decrease in inflammation and hard tissue resorption in the DFO group. Overall, these results suggest that DFO reduces inflammation and osteoclastogenesis in a tooth replantation model, and thus, it has to be further investigated as a root surface treatment option for an avulsed tooth.


Sign in / Sign up

Export Citation Format

Share Document