scholarly journals Encapsulation of Lovastatin in Zein Nanoparticles Exhibits Enhanced Apoptotic Activity in HepG2 Cells

2019 ◽  
Vol 20 (22) ◽  
pp. 5788 ◽  
Author(s):  
Nabil A. Alhakamy ◽  
Osama A.A. Ahmed ◽  
Hibah M. Aldawsari ◽  
Mohammad Y. Alfaifi ◽  
Basma G. Eid ◽  
...  

Research on statins highlights their potent cytotoxicity against cancer cells and their potential for cancer prevention. The aim of the current study was to examine whether loading lovastatin (LVS) in zein (ZN) nanoparticles (NPs) would potentiate the anti-proliferative effects of LVS and enhance its proliferation-inhibiting activity in HepG2 cells. LVS-ZN NPs were prepared and showed excellent characteristics, with respect to their particle size, zeta potential, diffusion, and entrapment efficiency. In addition, they showed the most potent anti-proliferative activity against HepG2 cells. ZN alone showed an observable anti-proliferative that was significantly higher than that of raw LVS. Furthermore, LVS uptake by HepG2 cells was greatly enhanced by the formulation in ZN. A cell cycle analysis indicated that LVS induced a significant cell accumulation in the G2/M and pre-G phases. In this regard, the LVS–ZN NPs exhibited the highest potency. The accumulation in the pre-G phase indicated an enhanced pro-apoptotic activity of the prepared formula. The cells incubated with the LVS-ZN NPs showed the highest percentage of cells with annexin-V positive staining. In addition, the same incubations showed the highest content of caspase-3 enzyme in comparison to raw LVS or ZN. Thus, the loading of LVS in ZN nanoparticles enhances its anti-proliferative activity against HepG2 cells, which is attributed, at least partly, to the enhanced cellular uptake and the induction of apoptosis.

2020 ◽  
Vol 21 (11) ◽  
pp. 4138
Author(s):  
Lamya H. Al-Wahaibi ◽  
Muneera S. M. Al-Saleem ◽  
Osama A. A. Ahmed ◽  
Usama A. Fahmy ◽  
Nabil A. Alhakamy ◽  
...  

Accumulating evidence indicates that statins reduce the risk of different cancers and inhibit the proliferation of liver cancer cells. This study aims to explore whether the electrostatic conjugation of optimized fluvastatin (FLV) to human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) would enhance the anti-proliferative activity against HepG2 cells. FLV–TAT conjugation was optimized to achieve the lowest size with highest zeta potential. Nine formulae were constructed, using a factorial design with three factors—FLV concentration, TAT concentration, and pH of the medium—while the responses were zeta potential and size. The optimized formula showed a particle size of 199.24 nm and 29.14 mV zeta potential. Data indicates that conjugation of FLV to TAT (optimized formula) significantly enhances anti-proliferative activity and uptake by HepG2 cells when compared to raw FLV. Flow cytometry showed significant accumulation of cells in the pre-G phase, which highlights higher apoptotic activity. Annexin V staining indicated a significant increase in total cell death in early and late apoptosis. This was confirmed by significantly elevated caspase 3 in cells exposed to FLV–TAT preparation. In conclusion, the FLV–TAT optimized formula exhibited improved anti-proliferative action against HepG2. This is partially attributed to the enhanced apoptotic effects and cellular uptake of FLV.


2003 ◽  
pp. 147-155 ◽  
Author(s):  
S Kang ◽  
J Song ◽  
H Kang ◽  
S Kim ◽  
Y Lee ◽  
...  

OBJECTIVE: Insulin has well-known activities in controlling energy metabolism, cellular proliferation and biosynthesis of functional molecules to maintain a biological homeostasis. Recently, several studies have suggested that insulin may protect cells from apoptosis in different cell lines; however, little is known about the nature of its anti-apoptotic activity. In many clinical disorders, including type 2 diabetes mellitus, oxidative stress and the production of reactive oxygen species (ROS) is increased. With these facts as a background, we examined here whether insulin protects HepG2 cells from apoptosis by decreasing oxidative stress and, if so, which signaling steps are involved in this process. METHODS: Intracellular DNA content, the degree of nuclear condensation or poly(ADP-ribose) polymerase hydrolysis was measured to verify the occurrence of apoptotic events. Caspase-3 activity and ROS accumulation within cells were also measured. Western blot analysis was performed to identify signaling molecules activated in response to insulin. RESULTS: Serum starvation resulted in a marked accumulation of ROS, activation of caspase-3, and subsequent apoptotic cell death which were, in turn, markedly blocked by the addition of insulin. The anti-apoptotic activity of insulin was sensitive to blockade of two different signaling steps, activations of phosphatidylinositol 3-kinase (PI3 kinase) and extracellular signal-regulated protein kinase (ERK). CONCLUSION: Insulin exerts an anti-apoptotic activity by suppressing the excessive accumulation of ROS within cells through signaling pathways including stimulation of PI3 kinase and ERK in HepG2 cells.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 226 ◽  
Author(s):  
Nabil A. Alhakamy ◽  
Usama A. Fahmy ◽  
Osama A. A. Ahmed ◽  
Giuseppe Caruso ◽  
Filippo Caraci ◽  
...  

This work aimed at improving the targeting and cytotoxicity of simvastatin (SMV) against colon cancer cells. SMV was encapsulated in chitosan polymers, followed by eudragit S100 microparticles. The release of SMV double coated microparticles was dependent on time and pH. At pH 7.4 maximum release was observed for 6 h. The efficiency of the double coat to target colonic tissues was confirmed using real-time X-ray radiography of iohexol dye. Entrapment efficiency and particle size were used in the characterization of the formula. Cytotoxicity of SMV microparticles against HCT-116 colon cancer cells was significantly improved as compared to raw SMV. Cell cycle analysis by flow cytomeric technique indicated enhanced accumulation of colon cancer cells in the G2/M phase. Additionally, a significantly higher cell fraction was observed in the pre-G phase, which highlighted enhancement of the proapoptotic activity of SMV prepared in the double coat formula. Assessment of annexin V staining was used for confirmation. Cell fraction in early, late and total cell death were significantly elevated. This was accompanied by a significant elevation of cellular caspase 3 activity. In conclusion, SMV-loaded chitosan coated with eudragit S100 formula exhibited improved colon targeting and enhanced cytotoxicity and proapoptotic activity against HCT-116 colon cancer cells.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Fabrizio Montecucco ◽  
Maria Bertolotto ◽  
Luciano Ottonello ◽  
Alessandra Quercioli ◽  
François Mach ◽  
...  

The modulation of CD40L activity might represent a promising therapeutic target to reduce monocyte inflammatory functions in chronic diseases, such as rheumatoid arthritis. In the present study, we investigated the possible influence of nonsteroidal anti-inflammatory drugs (NSAIDs) on CD40L-induced monocyte survival. Monocytes were isolated from buffy coats by using Ficoll-Percoll gradients. Monocyte apoptosis was evaluated by fluorescence microscopy on cytopreps stained with acridine orange or using flow cytometry analysis of Annexin-V and Propidium Iodide staining. Akt and NF-κB activation was assessed using western blot. Caspase 3 activity was determined spectrophotometrically. Among different NSAIDs, only oxaprozin dose-dependently increased apoptosis of CD40L-treated monocytes. Oxaprozin pro-apoptotic activity was associated with the inhibition of CD40L-triggered Akt and NF-κB phosphorylation and the activation of caspase 3. In conclusion, our data suggest that oxaprozin-induced apoptosis in CD40L-treated human monocytes is associated with previously unknown cyclooxygenase (COX)-independent pathways. These intracellular proteins might be promising pharmacological targets to increase apoptosis in CD40L-treated monocytes.


2021 ◽  
Author(s):  
Levent Aydemir ◽  
Elif Sinem İplik ◽  
Baris Ertugrul ◽  
Göksu Kasarci ◽  
Merve Nur Atas ◽  
...  

Abstract PurposeSince oral squamous cell carcinoma (OSCC) patients are exhausted against the powerful chemotherapies and radiotherapies after surgeries, therefore most of the studies still look for less toxic but effective alternatives with new ideas such as antibiotic combinations.MethodsThe antiproliferative and apoptotic outcomes of levofloxacin with cisplatin combination as well as their single usage were examined with WST-1, Caspase-3/BCA and Annexin-V methods on SCC-15 cells and on a healthy cell line (MRC-5).Results24h treatment of 50 mM single levofloxacin, 50 mM single cisplatin and 50 mM levofloxacin-cisplatin combination resulted in cell viability rates of SCC-15 cells as 90%, 67% and 80.8% respectively. Caspase-3 enzyme activity was enhanced 0.92-fold for single levofloxacin, 13.05-fold for single cisplatin and 9.73-fold for the combination of levofloxacin-cisplatin, the total apoptotic activity of single levofloxacin, single cisplatin and levofloxacin-cisplatin combination were observed as 4.88%, 21.14% and 16.21% respectively on SCC-15. Also MRC-5 were showed the lower toxicity than cancer cells via apoptosis.ConclusionLevofloxacin-cisplatin combination results have also ended up apoptotic results with less toxicity for cells than single cisplatin treatment. Therefore, our apoptotic findings suggest that the different dosage combinations with levofloxacin and cisplatin are necessary to understand the interaction for the treatment of tongue squamous cell carcinoma.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 419 ◽  
Author(s):  
Nabil A. Alhakamy ◽  
Shaimaa M. Badr-Eldin ◽  
Osama A. A. Ahmed ◽  
Hani Z. Asfour ◽  
Hibah M. Aldawsari ◽  
...  

Piceatannol (PIC), a naturally occurring polyphenolic stilbene, has pleiotropic pharmacological activities. It has reported cytotoxic activities against different cancer cells. In the present study, PIC emulsomes (PIC-E) were formulated and assessed for cytotoxic activity. A Box–Behnken design was employed to investigate the influence of formulation factors on particle size and drug entrapment. After optimization, the formulation had a spherical shape with a particle size of 125.45 ± 1.62 nm and entrapment efficiency of 93.14% ± 2.15%. Assessment of cytotoxic activities indicated that the optimized PIC-E formula exhibited significantly lower IC50 against HCT 116 cells. Analysis of the cell cycle revealed the accumulation of cells in the G2-M phase as well as increased cell fraction in the sub-G1 phase, an indication of apoptotic-enhancing activity. Staining of cells with Annexin V indicated increased early and late apoptosis. Further, the cellular contents of caspase - 3 and Bax/Bcl-2 mRNA expression were significantly elevated by PIC-E. In addition, the mitochondrial membrane potential (MMP) was disturbed and reactive oxygen species (ROS) production was increased. In conclusion, PIC-E exhibited superior cell death-inducing activities against HCT 116 cells as compared to pure PIC. This is mediated, at least partly, by enhanced pro-apoptotic activity, disruption of MMP, and stimulation of ROS generation.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


Author(s):  
Merve Erkisa ◽  
Nazlihan Aztopal ◽  
Elif Erturk ◽  
Engin Ulukaya ◽  
Veysel T. Yilmaz ◽  
...  

Background: Cancer stem cells (CSC) are subpopulation within the tumor that acts a part in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy. Objective: In our study we scope out the effects of combination of a histone deacetylases inhibitor, valproic acid (VPA), and Cu(II) complex [Cu(barb-κN)(barb-κ2N,O)(phen-κN,N’)]·H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7). Methods: Viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2ˈ,7ˈ–dichlorofluorescein diacetate staining. Results: The VPA combined with Cu(II) complex showed anti proliferative activity on MCF-7s cells in a dose- and time-dependently. Treatment with combination of 2.5 mM VPA and 3.12 μM Cu(II) complex induces oxidative stress in a time-dependent manner, as well as apoptosis that is evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels. Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy that further analysis is required.


2020 ◽  
Vol 20 (4) ◽  
pp. 504-517
Author(s):  
Yu-Lan Li ◽  
Xin-Li Gan ◽  
Rong-Ping Zhu ◽  
Xuehong Wang ◽  
Duan-Fang Liao ◽  
...  

Objective: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. Methods: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. Results: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. Conclusion: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.


2019 ◽  
Vol 19 (6) ◽  
pp. 826-837 ◽  
Author(s):  
Pratibha Pandey ◽  
Preeti Bajpai ◽  
Mohammad H. Siddiqui ◽  
Uzma Sayyed ◽  
Rohit Tiwari ◽  
...  

Background:Plant sterols have proven a potent anti-proliferative and apoptosis inducing agent against several carcinomas including breast and prostate cancers. Jab1 has been reported to be involved in the progression of numerous carcinomas. However, antiproliferative effects of sterols against Jab1 in gall bladder cancer have not been explored yet.Objective:In the current study, we elucidated the mechanism of action of stigmasterol regarding apoptosis induction mediated via downregulation of Jab1 protein in human gall bladder cancer cells.Methods:In our study, we performed MTT and Trypan blue assay to assess the effect of stigmasterol on cell proliferation. In addition, RT-PCR and western blotting were performed to identify the effect of stigmasterol on Jab1 and p27 expression in human gall bladder cancer cells. We further performed cell cycle, Caspase-3, Hoechst and FITC-Annexin V analysis, to confirm the apoptosis induction in stigmasterol treated human gall bladder cancer cells.Results:Our results clearly indicated that stigmasterol has up-regulated the p27 expression and down-regulated Jab1 gene. These modulations of genes might occur via mitochondrial apoptosis signaling pathway. Caspase-3 gets activated with the apoptotic induction. Increase in apoptotic cells and DNA were confirmed through annexin V staining, Hoechst staining, and cell cycle analysis.Conclusion:Thus, these results strongly suggest that stigmasterol has the potential to be considered as an anticancerous therapeutic agent against Jab1 in gall bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document