scholarly journals Onconase Restores Cytotoxicity in Dabrafenib-Resistant A375 Human Melanoma Cells and Affects Cell Migration, Invasion and Colony Formation Capability

2019 ◽  
Vol 20 (23) ◽  
pp. 5980 ◽  
Author(s):  
Raineri ◽  
Fasoli ◽  
Campagnari ◽  
Gotte ◽  
Menegazzi

Melanoma is a lethal tumor because of its severe metastatic potential, and serine/threonine-protein kinase B-raf inhibitors (BRAFi) are used in patients harboring BRAF-mutation. Unfortunately, BRAFi induce resistance. Therefore, we tested the activity of onconase (ONC), a cytotoxic RNase variant, against BRAFi-resistant cells to re-establish the efficacy of the chemotherapy. To do so, an A375 dabrafenib-resistant (A375DR) melanoma cell subpopulation was selected and its behavior compared with that of parental (A375P) cells by crystal violet, 5-Bromo-2’-deoxyuridine incorporation, and cleaved poly(ADP-ribose) polymerase 1 (PARP1) western blot measurements. Then, nuclear p65 Nuclear Factor kappaB (NF-κB) and IκB kinases-α/β (IKK) phosphorylation levels were measured. Gelatin zymography was performed to evaluate metalloproteinase 2 (MMP2) activity. In addition, assays to measure migration, invasion and soft agar colony formation were performed to examine the tumor cell dissemination propensity. ONC affected the total viability and the proliferation rate of both A375P and A375DR cell subpopulations in a dose-dependent manner and also induced apoptotic cell death. Among its pleiotropic effects, ONC reduced nuclear p65 NF-κB amount and IKK phosphorylation level, as well as MMP2 activity in both cell subpopulations. ONC decreased cell colony formation, migration, and invasion capability. Notably, it induced apoptosis and inhibited colony formation and invasiveness more extensively in A375DR than in A375P cells. In conclusion, ONC successfully counteracts melanoma malignancy especially in BRAFi-resistant cells and could become a tool against melanoma recurrence.

Author(s):  
Songou Zhang ◽  
Lei He ◽  
Jinxiang Shang ◽  
Long Chen ◽  
Yifan Xu ◽  
...  

Background: Carvacrol is a monoterpenic phenol extracted from traditional Chinese herbs, including oregano and thyme. Currently, carvacrol has been widely studied for its therapeutic role in central nervous system diseases, liver diseases and digestive system cancer. Objective: However, the role of carvacrol in osteosarcoma and its underlying molecular mechanism remain elusive. Here, we aimed to examine the anticancer effects of carvacrol on osteosarcoma. Methods: The effects of carvacrol on the osteosarcoma proliferation capacity were revealed by CCK-8 and colony formation assays. Flow cytometry and Hoechst assays were used to determine the effects of carvacrol on osteosarcoma cell apoptosis. The effect of carvacrol on migration and invasion of osteosarcoma cells was determined by wound healing and transwell tests. Protein expression was evaluated by WB assays. The suppressive effects of carvacrol on osteosarcoma in vivo were examined by a xenograft animal model, immunohistochemistry and HE staining. Results: We demonstrated that carvacrol treatment reduced viability and inhibited the colony formation of U2OS and 143B cells in a concentration-dependent manner. Apoptotic cell number increased after exposure to carvacrol. Meanwhile, the expression of Bax increased, and that of Bcl-2 decreased by carvacrol treatment. In addition, the MMP-9 expression and migration and invasion of 143B and U2OS cells were inhibited by carvacrol. We also found that these carvacrol-induced effects on osteosarcoma are associated with the regulation of the Wnt/β-catenin signaling pathway. Conclusion: Our findings suggest that carvacrol suppresses proliferation, migration, invasion and promotes apoptosis in osteosarcoma cells, in part by regulating the Wnt/β-catenin signaling pathway.


Reproduction ◽  
2020 ◽  
Vol 159 (5) ◽  
pp. 549-558 ◽  
Author(s):  
Saba Hajazimian ◽  
Masoud Maleki ◽  
Shahla Danaei Mehrabad ◽  
Alireza Isazadeh

Endometriosis is a relatively benign disease characterized by endometrial tumors and uterus stroma. Apoptosis suppression is one of the most important pathological processes of endometriosis. Recently, several studies reported that human Wharton’s jelly stem cells (hWJSCs) can inhibit growth and proliferation of various cancer cells through induction of apoptosis. Therefore, the aim of the present study was to investigate the effects of hWJSCs conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) on endometriosis cells in vitro. In the present study, effects of different concentrations of hWJSC-CM and hWJSC-CL on viability and proliferation, morphological alterations, colony formation, migration, invasion, and apoptosis of endometriosis cells were evaluated. Our results showed that hWJSC-CM and hWJSC-CL decrease viability and proliferation, colony formation, migration, and invasion, as well as increase morphological alterations and apoptosis of endometriosis cells, in a concentration- and time-dependent manner. Decreased migration and invasion of treated endometriosis cells with hWJSC-CM and hWJSC-CL may be due to decrease of MMP-2 and MMP-9 gene expression. Moreover, induction of apoptosis in treated endometriosis cells can be due to regulation of apoptosis-related genes expression, including BAX, BCL-2, SMAC, and SURVIVIN. The results of the present study suggest that hWJSC-CM and hWJSC-CL can inhibit endometriosis cells at a mild-to-moderate level through various physiological mechanisms. However, further studies on animal models are necessary to achieve more accurate results.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Manuel Valenzuela ◽  
Lorena Bastias ◽  
Iván Montenegro ◽  
Enrique Werner ◽  
Alejandro Madrid ◽  
...  

Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type.Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.


2020 ◽  
Vol 21 (5) ◽  
pp. 1827 ◽  
Author(s):  
Yahima Frión-Herrera ◽  
Daniela Gabbia ◽  
Michela Scaffidi ◽  
Letizia Zagni ◽  
Osmany Cuesta-Rubio ◽  
...  

The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines, i.e., HT-29 and LoVo. Our results show that CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). In conclusion NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These finding provide new insight about the mechanism(s) of the antitumoral properties of CP, due to NEM content.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick J. Messerschmitt ◽  
Ashley N. Rettew ◽  
Nicholas O. Schroeder ◽  
Robert E. Brookover ◽  
Avanti P. Jakatdar ◽  
...  

β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 393 ◽  
Author(s):  
Lulu Xie ◽  
Minjing Li ◽  
Desheng Liu ◽  
Xia Wang ◽  
Peiyuan Wang ◽  
...  

Liver cancer is a very common and significant health problem. Therefore, powerful molecular targeting agents are urgently needed. Previously, we demonstrated that secalonic acid-F (SAF) suppresses the growth of hepatocellular carcinoma (HCC) cells (HepG2), but the other anticancer biological functions and the underlying mechanism of SAF on HCC are unknown. In this study, we found that SAF, which was isolated from a fungal strain in our lab identified as Aspergillus aculeatus, could inhibit the progression of hepatocellular carcinoma by targeting MARCH1, which regulates the PI3K/AKT/β-catenin and antiapoptotic Mcl-1/Bcl-2 signaling cascades. First, we confirmed that SAF reduced the proliferation and colony formation of HCC cell lines (HepG2 and Hep3B), promoted cell apoptosis, and inhibited the cell cycle in HepG2 and Hep3B cells in a dose-dependent manner. In addition, the migration and invasion of HepG2 and Hep3B cells treated with SAF were significantly suppressed. Western blot analysis showed that the level of MARCH1 was downregulated by pretreatment with SAF through the regulation of the PI3K/AKT/β-catenin signaling pathways. Moreover, knockdown of MARCH1 by small interfering RNAs (siRNAs) targeting MARCH1 also suppressed the proliferation, colony formation, migration, and invasion as well as increased the apoptotic rate of HepG2 and Hep3B cells. These data confirmed that the downregulation of MARCH1 could inhibit the progression of hepatocellular carcinoma and that the mechanism may be via PI3K/AKT/β-catenin inactivation as well as the downregulation of the antiapoptotic Mcl-1/Bcl-2. In vivo, the downregulation of MARCH1 by treatment with SAF markedly inhibited tumor growth, suggesting that SAF partly blocks MARCH1 and further regulates the PI3K/AKT/β-catenin and antiapoptosis Mcl-1/Bcl-2 signaling cascade in the HCC nude mouse model. Additionally, the apparent diffusion coefficient (ADC) values, derived from magnetic resonance imaging (MRI), were increased in tumors after SAF treatment in a mouse model. Taken together, our findings suggest that MARCH1 is a potential molecular target for HCC treatment and that SAF is a promising agent targeting MARCH1 to treat liver cancer patients.


2001 ◽  
Vol 21 (20) ◽  
pp. 6895-6905 ◽  
Author(s):  
Hideto Kameda ◽  
John I. Risinger ◽  
Bing-Bing Han ◽  
Seung Joon Baek ◽  
J. Carl Barrett ◽  
...  

ABSTRACT An in vitro transformation system of carcinogen-treated Syrian hamster embryo (SHE) cell cultures represents multistep genetic and nongenetic changes that develop during the neoplastic progression of normal cells to tumor cells in vivo. During this neoplastic progression, SHE cells demonstrate an altered response to epidermal growth factor (EGF). In the present report, we examined the role of the adapter protein Gab1 (Grb2-associated binder-1) in the neoplastic progression of SHE cells. We used two asbestos-transformed SHE cell clones in different neoplastic stages: a 10W+8 clone, which is immortal and retains the ability to suppress the tumorigenicity of tumor cells in cell-cell hybrid experiments, and a 10W−1 clone, which has lost this tumor suppressor ability. 10W+8 cells expressed full-length 100-kDa Gab1 and associated 5.2-kb mRNA. Upon repeated cell passaging, 10W−1 cells showed increasing expression of a novel 87-kDa form of Gab1 as well as 4.6-kb mRNA with diminishing expression of the original 100-kDa Gab1. cDNA encoding the 87-kDa Gab1 predicts a form of Gab1 lacking the amino-terminal 103 amino acids (Gab1Δ1-103), which corresponds to loss of most of the pleckstrin homology (PH) domain. Gab1Δ1-103 retains the ability to be phosphorylated in an EGF-dependent manner and to associate with the EGF receptor and SHP-2 upon EGF stimulation. The endogenous expression of Gab1Δ1-103 in 10W−1 cells appeared closely related to EGF-dependent colony formation in soft agar. Moreover, transfection and expression of Gab1Δ1-103, but not Gab1, in 10W+8 cells enhanced their EGF-dependent colony formation in soft agar. These results demonstrate that Gab1 is a target of carcinogen-induced transformation of SHE cells and that the expression of a Gab1 variant lacking most of the PH domain plays a specific role in the neoplastic progression of SHE cells.


Blood ◽  
2006 ◽  
Vol 108 (9) ◽  
pp. 3143-3151 ◽  
Author(s):  
Javier Redondo-Muñoz ◽  
Elizabeth Escobar-Díaz ◽  
Rafael Samaniego ◽  
María José Terol ◽  
José A. García-Marco ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) progression is determined by malignant cell extravasation and lymphoid tissue infiltration. We have studied the role and regulation of matrix metalloproteinase-9 (MMP-9) in B-CLL cell migration and invasion. Adhesion of B-CLL cells to the fibronectin fragment FN-H89, VCAM-1, or TNF-α–activated human umbilical vein endothelial cells (HUVECs) up-regulated MMP-9 production, measured by gelatin zymography. This effect was mediated by α4β1 integrin and required PI3-K/Akt signaling. The chemokine CXCL12 also up-regulated MMP-9, independently of α4β1 and involving ERK1/2 but not Akt activity. Accordingly, α4β1 engagement activated the PI3-K/Akt/NF-κB pathway, while CXCL12/CXCR4 interaction activated ERK1/2/c-Fos signaling. Anti–MMP-9 antibodies, the MMP-9 inhibitor TIMP-1, or transfection with 3 different MMP-9 siRNAs significantly blocked migration through Matrigel or HUVECs. Cell-associated MMP-9 was mainly at the membrane and contained the proactive and mature forms. Moreover, B-CLL cells formed podosomes upon adhesion to FN-H89, VCAM-1, or fibronectin; MMP-9 localized to podosomes in a PI3-K–dependent manner and degraded a fibronectin/gelatin matrix. Our results are the first to show that MMP-9 is physiologically regulated by α4β1 integrin and CXCL12 and plays a key role in cell invasion and transendothelial migration, thus contributing to B-CLL progression. MMP-9 could therefore constitute a target for treatment of this malignancy.


2020 ◽  
Vol 21 (24) ◽  
pp. 9406
Author(s):  
Katarzyna Kaławaj ◽  
Adrianna Sławińska-Brych ◽  
Magdalena Mizerska-Kowalska ◽  
Aleksandra Żurek ◽  
Agnieszka Bojarska-Junak ◽  
...  

Osteosarcoma (OS) is the most common type of primary bone tumor. Currently, there are limited treatment options for metastatic OS. Alpha-ketoglutarate (AKG), i.e., a multifunctional intermediate of the Krebs cycle, is one of the central metabolic regulators of tumor fate and plays an important role in cancerogenesis and tumor progression. There is growing evidence suggesting that AKG may represent a novel adjuvant therapeutic opportunity in anti-cancer therapy. The present study was intended to check whether supplementation of Saos-2 and HOS osteosarcoma cell lines (harboring a TP53 mutation) with exogenous AKG exerted an anti-cancer effect. The results revealed that AKG inhibited the proliferation of both OS cell lines in a concentration-dependent manner. As evidenced by flow cytometry, AKG blocked cell cycle progression at the G1 stage in both cell lines, which was accompanied by a decreased level of cyclin D1 in HOS and increased expression of p21Waf1/Cip1 protein in Saos-2 cells (evaluated with the ELISA method). Moreover, AKG induced apoptotic cell death and caspase-3 activation in both OS cell lines (determined by cytometric analysis). Both the immunoblotting and cytometric analysis revealed that the AKG-induced apoptosis proceeded predominantly through activation of an intrinsic caspase 9-dependent apoptotic pathway and an increased Bax/Bcl-2 ratio. The apoptotic process in the AKG-treated cells was mediated via c-Jun N-terminal protein kinase (JNK) activation, as the specific inhibitor of this kinase partially rescued the cells from apoptotic death. In addition, the AKG treatment led to reduced activation of extracellular signal-regulated kinase (ERK1/2) and significant inhibition of cell migration and invasion in vitro concomitantly with decreased production of pro-metastatic transforming growth factor β (TGF-β) and pro-angiogenic vascular endothelial growth factor (VEGF) in both OS cell lines suggesting the anti-metastatic potential of this compound. In conclusion, we showed the anti-osteosarcoma potential of AKG and provided a rationale for a further study of the possible application of AKG in OS therapy.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Bin Liu ◽  
Liang Xu ◽  
E-Nuo Dai ◽  
Jia-Xin Tian ◽  
Jian-Min Li

Osteosarcoma (OS) is the most common primary malignancy of skeleton with higher mortality rates amongst children and young adults worldwide, whereas effective and secure therapies have also been sought by researches with ongoing efforts. The purpose of the present study was to investigate the impact of N′-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene] benzohydrazide (MDA19) on OS and explore its potential mechanism. Cell Counting Kit-8 (CCK8) and colony formation assay were employed to evaluate the potential effect of MDA19 on U2OS and MG-63 cells proliferation. Moreover, transwell migration and invasion assay were performed to assess the influence of MDA19 on U2OS and MG-63 cells migration and invasion. In addition, Annexin V-FITC/propidium iodide (Annexin V-FITC/PI) staining and flow cytometry were used to examine apoptotic ratio of the U2OS and MG-63 cells. Meanwhile, Western blot analysis was applied to explore change of relevant mechanism proteins in OS cells treated with MDA19. Our study showed that MDA19 had anti-proliferative activity of OS cells in a dose- and time-dependent manner, simultaneously, inhibition of colony formation was also observed in U2OS and MG-63 cells after incubation of MDA19. Besides, MDA19 could significantly inhibit the number of migrated and invaded OS cells and markedly increase the OS cells apoptosis rate. Mechanistically, we detected detectable reductions in apoptosis related proteins, epithelial–mesenchymal transition (EMT)-related proteins and activity of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling in U2OS and MG-63 cells exposure to MDA19. Overall, the current study indicates in vitro anti-proliferative, anti-metastatic, and pro-apoptotic potential of MDA19 in U2OS and MG-63 cells. Our findings propose a clue for further studies with this compound in preclinical and clinical treatment for OS.


Sign in / Sign up

Export Citation Format

Share Document