scholarly journals Potential Use of Biotherapeutic Bacteria to Target Colorectal Cancer-Associated Taxa

2020 ◽  
Vol 21 (3) ◽  
pp. 924 ◽  
Author(s):  
Garreth W. Lawrence ◽  
Máire Begley ◽  
Paul D. Cotter ◽  
Caitriona M. Guinane

The role of the gut microbiome in human health and disease is the focus of much attention. It has been widely agreed upon that our gut bacteria play a role in host immunity, nutrient absorption, digestion, metabolism, and other key drivers of health. Furthermore, certain microbial signatures and specific taxa have also been associated with the development of diseases, such as obesity; inflammatory bowel disease; and, indeed, colorectal cancer (CRC), which is the focus of this review. By extension, such taxa represent potential therapeutic targets. In particular, the emerging human pathogen Fusobacterium nucleatum represents an important agent in CRC development and its control within the gastrointestinal tract is desirable. This paper reviews the principal bacterial pathogens that have been associated with CRC to date and discusses the in vitro and human studies that have shown the potential use of biotherapeutic strains as a means of targeting CRC-associated bacteria.

Author(s):  
Lei Lei ◽  
Jianan Zhang ◽  
Eric A. Decker ◽  
Guodong Zhang

Redox stress is a common feature of gut disorders such as colonic inflammation (inflammatory bowel disease or IBD) and colorectal cancer (CRC). This leads to increased colonic formation of lipid-derived electrophiles (LDEs) such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), trans, trans-2,4-decadienal (tt-DDE), and epoxyketooctadecenoic acid (EKODE). Recent research by us and others support that treatment with LDEs increases the severity of colitis and exacerbates the development of colon tumorigenesis in vitro and in vivo, supporting a critical role of these compounds in the pathogenesis of IBD and CRC. In this review, we will discuss the effects and mechanisms of LDEs on development of IBD and CRC and lifestyle factors, which could potentially affect tissue levels of LDEs to regulate IBD and CRC development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiang Li ◽  
Jiepeng Huang ◽  
Tingting Yu ◽  
Xiaoting Fang ◽  
Liqin Lou ◽  
...  

Background/AimsGrowing evidence supports the direct link of Fusobacterium nucleatum with colorectal cancer (CRC). However, to date, the underlying mechanism of action remains poorly understood. In this study, we examined the effects of F. nucleatum on the progression of CRC and investigated whether cyclin-dependent kinase 5 (Cdk5) is involved in the effect through activating the Wnt/β-catenin signaling pathway.Materials and MethodsCRC tissues and matched histologically normal specimens were collected from patients who were diagnosed with CRC and underwent surgical treatment in our hospital between January 2018 and January 2019. Two human CRC cell lines, including DLD-1 and SW480, were utilized mainly for in vitro mechanistic investigations.ResultsThe abundance of F. nucleatum was significantly greater in CRC tissues than in cancer-free specimens, which was significantly correlated with the progression of CRC. In vitro investigations revealed that F. nucleatum significantly enhanced the proliferation and migration of CRC cells. Furthermore, F. nucleatum significantly induced the expression of Cdk5 and activation of the Wnt/β-catenin signaling pathway. Notably, knockdown of Cdk5 significantly abrogated the effects of F. nucleatum on cellular processes and Wnt/β-catenin signaling in relation to the progression of CRC.ConclusionThe results of this study demonstrate that F. nucleatum orchestrates a molecular network involving the direct role of Cdk5 in activating Wnt/β-catenin signaling to modulate CRC progression. Thus, in-depth investigations of F. nucleatum-associated molecular pathways may offer valuable insight into the pathogenesis of CRC, which may help further the development of treatment for this disease.


2021 ◽  
Vol 14 ◽  
pp. 175628482110471
Author(s):  
Lin Zhang ◽  
Hui Zhan ◽  
Wenye Xu ◽  
Shuai Yan ◽  
Siew C. Ng

The gut microbiome comprised of microbes from multiple kingdoms, including bacteria, fungi, and viruses. Emerging evidence suggests that the intestinal fungi (the gut “mycobiome”) play an important role in host immunity and inflammation. Advances in next generation sequencing methods to study the fungi in fecal samples and mucosa tissues have expanded our understanding of gut fungi in intestinal homeostasis and systemic immunity in health and their contribution to different human diseases. In this review, the current status of gut mycobiome in health, early life, and different diseases including inflammatory bowel disease, colorectal cancer, and metabolic diseases were summarized.


2020 ◽  
Author(s):  
Océane C.B. Martin ◽  
Deborah Butter ◽  
Eleni Paparouna ◽  
Sofia D.P. Theodorou ◽  
Maria M. Haykal ◽  
...  

SummaryBacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram negative bacteria, enriched in the microbiota of Inflammatory Bowel Disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We have addressed the role of the typhoid toxin in the modulation of the host-microbial interaction in health and disease.Infection with a genotoxigenic Salmonella protected mice from intestinal inflammation. The toxin-induced DNA damage caused senescence in vivo, which was uncoupled from the inflammatory response, and associated with the maintenance of an anti-inflammatory environment. This effect was lost when infection occurred in mice suffering from inflammatory conditions that mimic Ulcerative Colitis, a form of IBD.These data highlight a complex context-dependent crosstalk between bacterial genotoxins-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Lan Jin ◽  
Yunhe Chen ◽  
Dan Cheng ◽  
Zhikai He ◽  
Xinyi Shi ◽  
...  

AbstractColorectal cancer (CRC) is one of the most aggressive and lethal cancers. The role of autophagy in the pathobiology of CRC is intricate, with opposing functions manifested in different cellular contexts. The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor-suppressor pathway, functions as an oncoprotein in a variety of cancers. In this study, we found that YAP could negatively regulate autophagy in CRC cells, and consequently, promote tumor progression of CRC in vitro and in vivo. Mechanistically, YAP interacts with TEAD forming a complex to upregulate the transcription of the apoptosis-inhibitory protein Bcl-2, which may subsequently facilitate cell survival by suppressing autophagy-related cell death; silencing Bcl-2 expression could alleviate YAP-induced autophagy inhibition without affecting YAP expression. Collectively, our data provide evidence for YAP/Bcl-2 as a potential therapeutic target for drug exploration against CRC.


2021 ◽  
Vol 16 (1) ◽  
pp. 523-536
Author(s):  
Minghao Li ◽  
Jianbin Zhuang ◽  
Di Kang ◽  
Yuzhuo Chen ◽  
Weiliang Song

Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


2019 ◽  
Vol 5 (3) ◽  
pp. 178-187 ◽  
Author(s):  
Chun-Hui Sun ◽  
Bin-Bin Li ◽  
Bo Wang ◽  
Jing Zhao ◽  
Xiao-Ying Zhang ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3402
Author(s):  
Barbara Borsani ◽  
Raffaella De Santis ◽  
Veronica Perico ◽  
Francesca Penagini ◽  
Erica Pendezza ◽  
...  

Carrageenan (CGN) is a high molecular weight polysaccharide extracted from red seaweeds, composed of D-galactose residues linked in β-1,4 and α-1,3 galactose-galactose bond, widely used as a food additive in processed foods for its properties as a thickener, gelling agent, emulsifier, and stabilizer. In recent years, with the spread of the Western diet (WD), its consumption has increased. Nonetheless, there is a debate on its safety. CGN is extensively used as an inflammatory and adjuvant agent in vitro and in animal experimental models for the investigation of immune processes or to assess the activity of anti-inflammatory drugs. CGN can activate the innate immune pathways of inflammation, alter the gut microbiota composition and the thickness of the mucus barrier. Clinical evidence suggests that CGN is involved in the pathogenesis and clinical management of inflammatory bowel diseases (IBD), indeed food-exclusion diets can be an effective therapy for disease remission. Moreover, specific IgE to the oligosaccharide α-Gal has been associated with allergic reactions commonly referred to as the “α-Gal syndrome”. This review aims to discuss the role of carrageenan in inflammatory bowel diseases and allergic reactions following the current evidence. Furthermore, as no definitive data are available on the safety and the effects of CGN, we suggest gaps to be filled and advise to limit the human exposure to CGN by reducing the consumption of ultra-processed foods.


Sign in / Sign up

Export Citation Format

Share Document