scholarly journals Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas arboricola pv. juglandis Infection

2020 ◽  
Vol 21 (4) ◽  
pp. 1251 ◽  
Author(s):  
Shijiao Jiang ◽  
Bipin Balan ◽  
Renata de A. B. Assis ◽  
Cintia H. D. Sagawa ◽  
Xueqin Wan ◽  
...  

Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant–pathogen interaction, the focus of this study. We identified 25 SWEET genes in the walnut genome and distinguished each by its individual gene structure and pattern of expression in different walnut tissues. Their chromosomal locations, cis-acting motifs within their 5′ regulatory elements, and phylogenetic relationship patterns provided the first comprehensive analysis of the SWEET gene family of sugar transporters in walnut. This family is divided into four clades, the analysis of which suggests duplication and expansion of the SWEET gene family in Juglans regia. In addition, tissue-specific gene expression signatures suggest diverse possible functions for JrSWEET genes. Although these are commonly used by pathogens to harness sugar products from their plant hosts, little was known about their role during Xanthomonas arboricola pv. juglandis (Xaj) infection. We monitored the expression profiles of the JrSWEET genes in different tissues of “Chandler” walnuts when challenged with pathogen Xaj417 and concluded that SWEET-mediated sugar translocation from the host is not a trigger for walnut blight disease development. This may be directly related to the absence of type III secretion system-dependent transcription activator-like effectors (TALEs) in Xaj417, which suggests different strategies are employed by this pathogen to promote susceptibility to this major aboveground disease of walnuts.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7995 ◽  
Author(s):  
Zhanji Liu ◽  
Mingchuan Fu ◽  
Hao Li ◽  
Yizhen Chen ◽  
Liguo Wang ◽  
...  

As one of the largest plant-specific gene families, the NAC transcription factor gene family plays important roles in various plant physiological processes that are related to plant development, hormone signaling, and biotic and abiotic stresses. However, systematic investigation of the NAC gene family in sea-island cotton (Gossypium babardense L.) has not been reported, to date. The recent release of the complete genome sequence of sea-island cotton allowed us to perform systematic analyses of G. babardense NAC GbNAC) genes. In this study, we performed a genome-wide survey and identified 270 GbNAC genes in the sea-island cotton genome. Genome mapping analysis showed that GbNAC genes were unevenly distributed on 26 chromosomes. Through phylogenetic analyses of GbNACs along with their Arabidopsis counterparts, these proteins were divided into 10 groups (I–X), and each contained a different number of GbNACs with a similar gene structure and conserved motifs. One hundred and fifty-four duplicated gene pairs were identified, and almost all of them exhibited strong purifying selection during evolution. In addition, various cis-acting regulatory elements in GbNAC genes were found to be related to major hormones, defense and stress responses. Notably, transcriptome data analyses unveiled the expression profiles of 62 GbNAC genes under Verticillium wilt (VW) stress. Furthermore, the expression profiles of 15 GbNAC genes tested by quantitative real-time PCR (qPCR) demonstrated that they were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatments and that they could be involved in pathogen-related hormone regulation. Taken together, the genome-wide identification and expression profiling pave new avenues for systematic functional analysis of GbNAC candidates, which may be useful for improving cotton defense against VW.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2020 ◽  
Vol 71 (15) ◽  
pp. 4531-4546
Author(s):  
Huadun Wang ◽  
Yongfang Wan ◽  
Peter Buchner ◽  
Robert King ◽  
Hongxiang Ma ◽  
...  

Abstract NPF genes encode membrane transporters involved in the transport of a large variety of substrates including nitrate and peptides. The NPF gene family has been described for many plants, but the whole NPF gene family for wheat has not been completely identified. The release of the wheat reference genome has enabled the identification of the entire wheat NPF gene family. A systematic analysis of the whole wheat NPF gene family was performed, including responses of specific gene expression to development and nitrogen supply. A total of 331 NPF genes (113 homoeologous groups) have been identified in wheat. The chromosomal location of the NPF genes is unevenly distributed, with predominant occurrence in the long arms of the chromosomes. The phylogenetic analysis indicated that wheat NPF genes are closely clustered with Arabidopsis, Brachypodium, and rice orthologues, and subdivided into eight subfamilies. The expression profiles of wheat NPF genes were examined using RNA-seq data, and a subset of 44 NPF genes (homoeologous groups) with contrasting expression responses to nitrogen and/or development in different tissues were identified. The systematic identification of gene composition, chromosomal locations, evolutionary relationships, and expression profiles contributes to a better understanding of the roles of the wheat NPF genes and lays the foundation for further functional analysis in wheat.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shashank Kumar Yadav ◽  
Vinjamuri Venkata Santosh Kumar ◽  
Rakesh Kumar Verma ◽  
Pragya Yadav ◽  
Ankit Saroha ◽  
...  

Abstract Background Abscisic acid (ABA), a key phytohormone that controls plant growth and stress responses, is sensed by the pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Comprehensive information on evolution and function of PYL gene family in rice (Oryza sativa) needs further investigation. This study made detailed analysis on evolutionary relationship between PYL family members, collinearity, synteny, gene structure, protein motifs, cis-regulatory elements (CREs), SNP variations, miRNAs targeting PYLs and expression profiles in different tissues and stress responses. Results Based on sequence homology with Arabidopsis PYL proteins, we identified a total of 13 PYLs in rice (BOP clade) and maize (PACCMAD clade), while other members of BOP (wheat – each diploid genome, barley and Brachypodium) and PACCMAD (sorghum and foxtail millet) have 8-9 PYLs. The phylogenetic analysis divided PYLs into three subfamilies that are structurally and functionally conserved across species. Gene structure and motif analysis of OsPYLs revealed that members of each subfamily have similar gene and motif structure. Segmental duplication appears be the driving force for the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in rice. 32 unique potential miRNAs that might target PYLs were identified in rice. Thus, the predicted regulation of PYLs through miRNAs in rice is more elaborate as compared with B. napus. Further, the miRNAs identified to in this study were also regulated by stresses, which adds additional layer of regulation of PYLs. The frequency of SAPs identified was higher in indica cultivars and were predominantly located in START domain that participate in ABA binding. The promoters of most of the OsPYLs have cis-regulatory elements involved in imparting abiotic stress responsive expression. In silico and q-RT-PCR expression analyses of PYL genes revealed multifaceted role of ABARs in shaping plant development as well as abiotic stress responses. Conclusion The predicted miRNA mediated regulation of OsPYLs and stress regulated expression of all OsPYLs, at least, under one stress, lays foundation for further validation and fine tuning ABA receptors for stress tolerance without yield penalty in rice.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1906
Author(s):  
Jun Pu ◽  
Mingyu Li ◽  
Pei Mao ◽  
Qiang Zhou ◽  
Wenxian Liu ◽  
...  

Q-type C2H2 zinc-finger protein (C2H2-ZFP) transcription factors are associated with many plant growth development and environmental stress responses. To date, there have been few analyses of the Q-type C2H2-ZFP gene family in alfalfa (Medicago sativa subsp. sativa). In this study, we identified 58 Q-type C2H2-ZFPs across the entire alfalfa genome, and the gene structure, motif composition, chromosomal mapping, and cis-regulatory elements were explored, as well as the expression profiles of specific tissues and the response under different abiotic stresses. According to their phylogenetic features, these 58 MsZFPs were divided into 12 subgroups. Synteny analysis showed that duplication events play a vital role in the expansion of the MsZFP gene family. The collinearity results showed that a total of 26 and 42 of the 58 MsZFP genes were homologous with Arabidopsis and M. truncatula, respectively. The expression profiles showed that C2H2-ZFP genes played various roles in different tissues and abiotic stresses. The results of subsequent quantitative real-time polymerase chain reaction (qRT-PCR) showed that the nine selected MsZFP genes were rapidly induced under different abiotic stresses, indicating that C2H2-ZFP genes are closely related to abiotic stress. This study provides results on MsZFP genes, their response to various abiotic stresses, and new information on the C2H2 family in alfalfa.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiwei Chen ◽  
Longhua Zhou ◽  
Panpan Jiang ◽  
Ruiju Lu ◽  
Nigel G. Halford ◽  
...  

Abstract Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai Zhao ◽  
Song Chen ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
Boru Zhou ◽  
...  

Abstract Background The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. Results In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. Conclusions Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


Sign in / Sign up

Export Citation Format

Share Document