scholarly journals The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus

2020 ◽  
Vol 21 (12) ◽  
pp. 4543 ◽  
Author(s):  
Liliana Rytel ◽  
Slawomir Gonkowski

Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.

2018 ◽  
Vol 19 (10) ◽  
pp. 2962 ◽  
Author(s):  
Liliana Rytel

Bisphenol A (BPA), a substance commonly used in the manufacture of plastics, shows multidirectional negative effects on humans and animals. Due to similarities to estrogens, BPA initially leads to disorders in the reproductive system. On the other hand, it is known that neuregulin 1 (NRG-1) is an active substance which enhances the survivability of cells, inhibits apoptosis, and protects tissues against damaging factors. Because the influence of BPA on the nervous system has also been described, the aim of the present study was to investigate for the first time the influence of various doses of BPA on neuregulin 1-like immunoreactive (NRG-1-LI) nerves located in the porcine uterus using the routine single- and double-immunofluorescence technique. The obtained results have shown that BPA increases the number and affects the neurochemical characterization of NRG-1-LI in the uterus, and changes are visible even under the impact of small doses of this toxin. The character of observed changes depended on the dose of BPA and the part of the uterus studied. These observations suggest that NRG-1 in nerves supplying the uterus may play roles in adaptive and protective mechanisms under the impact of BPA.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2445
Author(s):  
Krystyna Makowska ◽  
Sławomir Gonkowski

Bisphenol A (BPA) is widely utilized in plastic production process all over the world. Previous studies have shown that BPA, with its similarity to estrogen, may negatively affect living organisms. It is acknowledged that BPA distorts the activity of multiple internal systems, including the nervous, reproductive, urinary, and endocrine systems. BPA also affects the gastrointestinal tract and enteric nervous system (ENS), which is placed throughout the wall from the esophagus to the rectum. Contrary to the intestine, the influence of BPA on the ENS in the stomach is still little known. This study, performed using the double immunofluorescence method, has revealed that BPA affects the number of nervous structures in the porcine gastric wall immunoreactive to vesicular acetylcholine transporter (VAChT, a marker of cholinergic neurons), substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL) and cocaine- and amphetamine-regulated transcript peptide (CART). The character and severity of noted alterations depended on the part of the ENS, the BPA dose, and the type of neuronal substance. Administration of BPA resulted in an increase in the number of nervous structures containing SP, GAL, and/or CART, and a decrease in the number of cholinergic neurons in all parts of the gastric wall. The number of VIP-positive nervous structures increased in the enteric myenteric ganglia, along with the muscular and mucosal layers, whilst it decreased in the submucous ganglia. The exact mechanism of noted changes was not absolutely obvious, but they were probably related to the neuroprotective and adaptive processes constituting the response to the impact of BPA.


Author(s):  
Weiping Zhuang ◽  
Narayanaganesh Balasubramanian ◽  
Lu Wang ◽  
Qian Wang ◽  
Timothy R. McDermott ◽  
...  

Agrobacterium tumefaciens GW4 is a heterotrophic arsenite oxidizing bacterium with a high resistance to arsenic toxicity. It is now a model organism for studying the processes of arsenic detoxification and utilization. Previously, we demonstrated that under low phosphate conditions, arsenate (As(V)) could enhance bacterial growth and be incorporated into biomolecules including lipids. While the basic microbial As(V) resistance mechanisms have been characterized, global metabolic responses under low phosphate remain largely unknown. In the present work, the impact of As(V) and low phosphate on intracellular metabolite and lipid profiles of GW4 were quantified using liquid chromatography-mass spectroscopy (LC-MS) in combination with transcriptional assays and the analysis of intracellular ATP and NADH levels. Metabolite profiling revealed that oxidative stress response pathways were altered and suggested an increase in DNA repair. Changes in metabolite levels in the TCA cycle along with increased ATP are consistent with As(V)-enhanced growth of A. tumefaciens GW4. Lipidomics analysis revealed that most glycerophospholipids decreased in abundance when As(V) was available. However, several glycerolipid classes increased, an outcome that is consistent with maximizing growth via a phosphate sparing phenotype. Differentially regulated lipids included phosphotidylcholine and lysophospholipids, which have not been previously reported in A. tumefaciens. The metabolites and lipids identified in this study deepen our understanding of the interplay between phosphate and arsenate on chemical and metabolic levels. IMPORTANCE Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited. Arsenate and phosphate are chemically similar and this behavior is believed to represent a phosphate sparing phenotype in which arsenate is used in place of phospohate in certain biomolecules. The research presented here uses a global approach to track metabolic changes in an environmentally relevant bacteria during exposure to arsenate when phosphate is low. Our findings are relevant for understanding the environmental fate of arsenic as well as how human associated microbiomes respond to this common toxin.


2020 ◽  
Vol 21 (3) ◽  
pp. 1079 ◽  
Author(s):  
Slawomir Gonkowski

Bisphenol A (BPA) is a substance used in the production of plastics which has a negative impact on many internal organs. Because BPA is normally toxic for the gastrointestinal (GI) tract, the intestine is especially vulnerable to the adverse effects of this substance. The aim of this investigation was to study the influence of two doses of BPA (0.05 mg and 0.5 mg/kg body weight/day) on the number of mucosal cells in the porcine small intestine and containing serotonin (5-hydroxytryptamine, 5-HT). During the experiment, it was demonstrated that both applied BPA doses caused an increase in the number of 5-HT-positive cells located in the mucosal layer of the duodenum, jejunum, and ileum. These changes may be connected with the direct impact of BPA on the intestinal mucosa, the pro-inflammatory and immunomodulatory properties of this substance, and/or the influence of BPA on the neurochemical characterization of nervous structures supplying the intestine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Makowska ◽  
Piotr Lech ◽  
Mariusz Majewski ◽  
Andrzej Rychlik ◽  
Slawomir Gonkowski

AbstractBisphenol A (BPA) is used in the production of plastics approved for contact with feed and food. Upon entering living organisms, BPA, as a potent endocrine disruptor, negatively affects various internal organs and regulatory systems, especially in young individuals. Although previous studies have described the neurotoxic effects of BPA on various tissues, it should be underlined that the putative influence of this substance on the chemical architecture of the urinary bladder intrinsic innervation has not yet been studied. One of the most important neuronal substances involved in the regulation of urinary bladder functions is vasoactive intestinal polypeptide (VIP), which primarily participates in the regulation of muscular activity and blood flow. Therefore, this study aimed to determine the influence of various doses of BPA on the distribution pattern of VIP-positive neural structures located in the wall of the porcine urinary bladder trigone using the double-immunofluorescence method. The obtained results show that BPA influence leads to an increase in the number of both neurons and nerve fibres containing VIP in the porcine urinary bladder trigone. This may indicate that VIP participates in adaptive processes of the urinary bladder evoked by BPA.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


1989 ◽  
Vol 62 (04) ◽  
pp. 1057-1061 ◽  
Author(s):  
Marcus E Carr ◽  
Patrick L Powers

SummaryThis study was performed to quantitate the impact of several glycosaminoglycans (GAG) on fibrin assembly and structure. Gel formation was monitored as the increase in optical density at 633 nm subsequent to thrombin (2 NIH u/ml) or atroxin (0.10 mg/ml) addition to solutions of buffered fibrinogen (1 mg/ml) or plasma. Gel absorbance was measured as a function of wavelength (400 to 800 nm) and gel fiber diameter and mass/length ratio (μ) were calculated. Chondroitin sulfate A (CSA)shortened the lag phase, enhanced the maximal rate of turbidity increase, and increased the final gel turbidity of fibrin gels formed by thrombin or atroxin. CSA (16 mg/ml) increased fiber μ from 1.3 to 3.1 × 1013 dalton/cm and fiber radius from 6.0 to 8.6 × 10-6 cm in thrombin-induced gels. μ increased from 0.7 to 2.7 × 1013 dalton/cm and fiber radius from 4 to 7.8 × 10-6 cm for atroxin-induced gels. Above 16 mg/ml, CSA caused fibrinogen precipitation in purified solutions but not in plasma. CSA inhibited thrombin-induced plasma clotting of plasma but effects in atroxin-mediated plasma gels paralleled those seen in purified solutions. Chondroitin sulfate B (CSB)-induced changes in fibrin were similar but slightly less dramatic than those seen with CSA. μ increased from 0.9 to 2.0 × 1013 dalton/cm for thrombin-induced fibrin gels and from 0.8 to 2.3 × 1013 dalton/cm for atroxininduced gels. Low molecular weight heparin (Mr = 5100) slowed fibrin assembly and reduced fiber size by 50% in thrombininduced gels. Changes in μ of atroxin-induced gels were much less pronounced (<20%). This study documents pronounced GAGinduced changes in fibrin structure which vary with GAG species and may mediate significant physiologic functions.


2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Agnieszka Ostrowska ◽  
Maciej T. Grzesiak ◽  
Tomasz Hura

AbstractSoil drought is a major problem in plant cultivation. This is particularly true for thermophilic plants, such as maize, which grow in areas often affected by precipitation shortage. The problem may be alleviated using plant growth and development stimulators. Therefore, the aim of the study was to analyze the effects of 5-aminolevulinic acid (5-ALA), zearalenone (ZEN), triacontanol (TRIA) and silicon (Si) on water management and photosynthetic activity of maize under soil drought. The experiments covered three developmental stages: three leaves, stem elongation and heading. The impact of these substances applied during drought stress depended on the plant development stage. 5-ALA affected chlorophyll levels, gas exchange and photochemical activity of PSII. Similar effects were observed for ZEN, which additionally induced stem elongation and limited dehydration. Beneficial effects of TRIA were visible at the stage of three leaves and involved leaf hydration and plant growth. A silicon preparation applied at the same developmental stage triggered similar effects and additionally induced changes in chlorophyll levels. All the stimulators significantly affected transpiration intensity at the heading stage.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 780
Author(s):  
Krystyna Makowska ◽  
Slawomir Gonkowski

Bisphenol A (BPA) contained in plastics used in the production of various everyday objects may leach from these items and contaminate food, water and air. As an endocrine disruptor, BPA negatively affects many internal organs and systems. Exposure to BPA also contributes to heart and cardiovascular system dysfunction, but many aspects connected with this activity remain unknown. Therefore, this study aimed to investigate the impact of BPA in a dose of 0.05 mg/kg body weight/day (in many countries such a dose is regarded as a tolerable daily intake–TDI dose of BPA–completely safe for living organisms) on the neurochemical characterization of nerves located in the heart wall using the immunofluorescence technique. The obtained results indicate that BPA (even in such a relatively low dose) increases the number of nerves immunoreactive to neuropeptide Y, substance P and tyrosine hydroxylase (used here as a marker of sympathetic innervation). However, BPA did not change the number of nerves immunoreactive to vesicular acetylcholine transporter (used here as a marker of cholinergic structures). These observations suggest that changes in the heart innervation may be at the root of BPA-induced circulatory disturbances, as well as arrhythmogenic and/or proinflammatory effects of this endocrine disruptor. Moreover, changes in the neurochemical characterization of nerves in the heart wall may be the first sign of exposure to BPA.


Sign in / Sign up

Export Citation Format

Share Document