scholarly journals Tepotinib Inhibits the Epithelial–Mesenchymal Transition and Tumor Growth of Gastric Cancers by Increasing GSK3β, E-Cadherin, and Mucin 5AC and 6 Levels

2020 ◽  
Vol 21 (17) ◽  
pp. 6027
Author(s):  
Sung-Hwa Sohn ◽  
Hee Jung Sul ◽  
Bohyun Kim ◽  
Bum Jun Kim ◽  
Hyeong Su Kim ◽  
...  

Aberrant expression of mucins (MUCs) can promote the epithelial–mesenchymal transition (EMT), which leads to enhanced tumorigenesis. Carcinogenesis-related pathways involving c-MET and β-catenin are associated with MUCs. In this study, we characterized the expression of EMT-relevant proteins including MET, β-catenin, and E-cadherin in human gastric cancer (GC) cell lines, and further characterized the differential susceptibility of these cell lines compared with the c-MET inhibitor tepotinib. We assessed the antitumor activity of tepotinib in GC cell lines. The effects of tepotinib on cell viability, apoptotic cell death, EMT, and c-MET and β-catenin signaling were evaluated by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS), flow cytometry, Western blotting, and qRT-PCR. The antitumor efficacy was assessed in MKN45 xenograft mice. Tepotinib treatment induced apoptosis in c-MET-amplified SNU620, MKN45, and KATO III cells, but had no effect on c-MET-reduced MKN28 or AGS cells. Tepotinib treatment also significantly reduced the protein levels of phosphorylated and total c-MET, phosphorylated and total ERK, β-catenin, and c-MYC in SNU620 and MKN45 cells. In contrast, this drug was only slightly active against KATO III cells. Notably, tepotinib significantly reduced the expression of EMT-promoting genes such as MMP7, COX-2, WNT1, MUC5B, and c-MYC in c-MET-amplified GC cells and increased the expression of EMT-suppressing genes such as MUC5AC, MUC6, GSK3β, and E-cadherin. In a mouse model, tepotinib exhibited good antitumor growth activity along with increased E-cadherin and decreased phosphorylated c-MET (phospho-c-MET) protein levels. Collectively, these results suggest that tepotinib suppresses tumor growth and migration by negatively regulating c-MET-induced EMT. These findings provide new insights into the mechanism by which MUC5AC and MUC6 contribute to GC progression.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16562-e16562
Author(s):  
Dae Young Zang ◽  
Sung-Hwa Sohn ◽  
Bohyun Kim ◽  
Hee Jung Sul ◽  
Jinhui Jeong ◽  
...  

e16562 Background: Aberrant expression of mucins can promote the epithelial-mesenchymal transition (EMT), which leads to enhanced tumorigenesis. Carcinogenesis-related pathways involving c-MET and beta-catenin involve mucins. This study characterized expressions of MET, MUC5AC, MUC5B, and MUC6 EMT signaling in human gastric cancer (GC) cell lines, and further characterized the differential susceptibility of these cell lines to tepotinib. Methods: We assessed the antitumor activity of tepotinib in GC cell lines. The effect of tepotinib on cell viability (IC50), apoptotic cell death, the EMT, and c-MET and beta-catenin signaling were evaluated by MTS assay, flow cytometry, western blotting, and qRT-PCR. Antitumor efficacy was assessed in MKN45 xenograft mice. Results: Tepotinib treatment showed dose-dependent growth inhibition of c-MET-amplified SNU620, MKN45, and KATO III cells with concomitant induction of apoptosis, but tepotinib treatment did not have an effect on c-MET-reduced MKN28 and AGS cells. Tepotinib treatment also significantly reduced expressions of phospho-c-MET, total c-MET, phospho-ERK, total ERK, beta-catenin, and c-Myc protein in SNU620 and MKN45 cells. In contrast, this drug was only slightly active against KATO III cells. Notably, tepotinib significantly reduced the expressions of EMT promotion genes such as MMP7, COX-2, WNT1, MUC5B, and c-Myc in c-MET-expressed GC cells, and increased expressions of EMT suppression genes such as MUC5AC, MUC6, GSK3beta, and ECAD. In a murine xenograft model, tumor volumes were significantly reduced in the tepotinib-treated group, when administered by daily oral gavage at a dose of 10mg/kg/day. Histologically, tepotinib induced more necrosis than in the control group. Conclusions: These data show the possibility that tepotinib may have therapeutic effects in c-MET-amplified GC, suggesting that clinical studies need to confirm the therapeutic effect.


2007 ◽  
Vol 204 (12) ◽  
pp. 2935-2948 ◽  
Author(s):  
Kevin G. Leong ◽  
Kyle Niessen ◽  
Iva Kulic ◽  
Afshin Raouf ◽  
Connie Eaves ◽  
...  

Aberrant expression of Jagged1 and Notch1 are associated with poor outcome in breast cancer. However, the reason that Jagged1 and/or Notch overexpression portends a poor prognosis is unknown. We identify Slug, a transcriptional repressor, as a novel Notch target and show that elevated levels of Slug correlate with increased expression of Jagged1 in various human cancers. Slug was essential for Notch-mediated repression of E-cadherin, which resulted in β-catenin activation and resistance to anoikis. Inhibition of ligand-induced Notch signaling in xenografted Slug-positive/E-cadherin–negative breast tumors promoted apoptosis and inhibited tumor growth and metastasis. This response was associated with down-regulated Slug expression, reexpression of E-cadherin, and suppression of active β-catenin. Our findings suggest that ligand-induced Notch activation, through the induction of Slug, promotes tumor growth and metastasis characterized by epithelial-to-mesenchymal transition and inhibition of anoikis.


2013 ◽  
Vol 134 (10) ◽  
pp. 2373-2382 ◽  
Author(s):  
Tatsuro Watanabe ◽  
Atsushi Takahashi ◽  
Kaori Suzuki ◽  
Miki Kurusu-Kanno ◽  
Kensei Yamaguchi ◽  
...  

2017 ◽  
Vol 41 (4) ◽  
pp. 1584-1595 ◽  
Author(s):  
Tao Ye ◽  
Jing Xu ◽  
Ling Du ◽  
Wenhui Mo ◽  
Yiming Liang ◽  
...  

Background/Aims: Dysregulation of ubiquitin-associated protein 2-like (UBAP2L) has been reported in tumors, but its role in hepatocellular carcinoma (HCC) progression is unclear. Methods: The expression levels of UBAP2L in HCC tissues and HCC cell lines were detected by western blot and quantitative real-time (qRT) PCR. The effects of UBAP2L expression on HCC cell biological traits, including migration and invasion, were investigated by wound healing assay and matrigel transwell assay. Simultaneously, the expression of epithelial-mesenchymal transition (EMT) markers including E-cadherin, CK-18, N-cadherin, Vimentin, Claudin7 and the promoter activity of E-cadherin were detected by western blot and qRT-PCR. Subsequently, role of SNAIL1 in UBAP2L-mediated EMT and the mechanism underlying UBAP2L-mediated SNAIL1 expression were further investigated. Results: UBAP2L was overexpressed in human HCC tissues compared with peri-tumoral tissues. Downregulation of UBAP2L inhibited migration, invasion and the EMT in highly metastatic HCC cell lines. Furthermore, UBAP2L knockdown inhibited expression of the transcriptional repressor SNAIL1 and its ability to bind to the E-cadherin promoter via SMAD2 signaling pathway, which in turn resulted in increased E-cadherin expression. Additionally, bioinformatics analysis showed that expression of UBAP2L is correlated with poor prognosis in patients with HCC. Conclusions: UBAP2L plays a critical role in maintenance of the metastatic ability of HCC cells via SNAIL1 Regulation and is predictive of a poor clinical outcome.


2021 ◽  
pp. 096032712110214
Author(s):  
Veronika Skarkova ◽  
Adam Skarka ◽  
Monika Manethova ◽  
Afroditi A Stefanidi ◽  
Emil Rudolf

Colorectal carcinoma (CRC) is a leading malignant disease in most developed countries. In advanced stages it presents with metastatic dissemination and significant chemoresistance. Despite intensive studies, no convincing evidence has been published concerning the association of cadherins and epithelial-mesenchymal transition (EMT) as a direct cause of acquired chemoresistance in CRC. The present study was designed to investigate the role of E-cadherin in EMT and its associated chemosensitivity/chemoresistance in four immortalized CRC cell lines representing various stages of CRC development (i.e. HT29 and Caco-2—early, SW480 and SW620 late). The expression of E-cadherin gene CDH1 was downregulated by the specific siRNA. Cell proliferation and chemosensitivity to irinotecan (IT) and oxaliplatin (OPT) were detected using WST-1 and x-CELLigence Real Time analysis. Expression of selected EMT markers were tested and compared using RT-PCR and western blot analysis in both variants (E-cadherin silenced and non-silenced) of each cell line. We have discovered that downregulation of E-cadherin expression has a diverse effect on both cell proliferation as well as the expression of EMT markers in individual tested CRC cell lines, with Caco-2 cells being the most responsive. On the other hand, reduced E-cadherin expression resulted in increased sensitivity of all cell lines to IT and mostly to OPT which might be related to changes in intracellular metabolism of these drugs. These results suggest dichotomy of E-cadherin involvement in the phenotypic EMT spectrum of CRC and warrants further mechanistic studies.


Author(s):  
Manvir S. Tevatia ◽  
Prabhashankar Mishra ◽  
Ajay K. Baranwal ◽  
Prachi B. Nichat ◽  
Divya Shelly ◽  
...  

Abstract Overview Mesenchymal tumors of the breast are rare. Few epithelial tumors also have mesenchymal components. It is crucial to identify these as per histogenesis. This can be facilitated by markers of epithelial–mesenchymal transition (EMT) Objectives The aim of this study was to categorize the breast lesions with mesenchymal morphology and to study EMT on immunohistochemistry (IHC). Materials and Methods This is a retrospective study of 5-year duration from January 2015 to December 2019. Inclusion criteria: all breast lesions showing mesenchymal/nonepithelial morphology, complete or partial, on histology. Exclusion criteria: Mammary carcinomas without any mesenchymal/nonepithelial morphology, fibroadenomas, and lymphomas. Demographics, clinical, gross examination, histology, and IHC findings of selected cases were reviewed and recorded. Three additional markers p53, E-cadherin, and β-catenin were performed. Statistical Analysis Used Frequency calculation for each variable (IHC). Results Thirteen (2.5%) out of total 510 breast specimens showed mesenchymal histology. Of these, five (38.5%) were metaplastic breast carcinomas (MBC), four (31%) were phyllodes tumor (PT), and one (7.7%) case each of malignant peripheral nerve sheath tumor, primary stromal sarcoma of breast, pseudoangiomatous stromal hyperplasia, and myofibroblastoma. Loss of E-cadherin was seen in 4/5 (80%) MBCs and was retained in ductal component of PTs. p53 was not expressed in any of the tumors except 3/5 (60%) MBCs. β-Catenin was aberrant in all MBCs. Conclusions Primary breast tumors with mesenchymal morphology present a spectrum ranging from benign mesenchymal, fibroepithelial neoplasms to malignant tumors of mesenchymal and epithelial origin. Loss of E-cadherin, expression of p53, and aberrant expression of β-catenin are suggestive of EMT and molecular heterogeneity of MBCs.


2021 ◽  
Vol 24 (11) ◽  
pp. 845-851
Author(s):  
Yongmei Dai ◽  
Wenhan Chen ◽  
Chen Huang ◽  
Shiyin Luo ◽  
Junpeng Huang ◽  
...  

Background: Comb homolog enhancer 1 (EPC1) gene is one of the important members of epigenetic inhibitor PCG family. It shows carcinogenic potential in a variety of malignant tumors, but the expression and role of EPC1 in nasopharyngeal carcinoma are unclear. The aim of this study was to explore the expression and function of enhancer of polycomb homolog 1 (EPC1) in nasopharyngeal carcinoma (NPC). Methods: The differential expression of EPC1 in the cancer tissues and cell lines of NPC was examined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). EPC1 expression, cell proliferation, and apoptosis were detected in NPC cell lines after EPC1 silencing, and the levels of the epithelial-mesenchymal transition (EMT)-related proteins E-cadherin and vimentin were detected in NPC cells after EPC1 silencing. The study was performed at Fujian Provincial Hospital, Fujian, China, from 2018 to 2019. Results: We found that EPC1 was significantly upregulated in the cancer tissues and cell lines of NPC (P<0.001). Furthermore, knockdown of EPC1 inhibited the growth and metastasis of NPC cells. E-cadherin and vimentin were detected in NPC cells after EPC1 was knocked out. It was confirmed that inhibition of EPC1 resulted in increased E-cadherin expression (P<0.001) and decreased vimentin expression (P<0.001), suggesting that inhibition of EPC1 could inhibit the EMT in NPC cells. Conclusion: EPC1 expression was upregulated in NPC tissues and cell lines. Knockout of EPC1 effectively inhibited the growth of NPC cells, induced apoptosis, and inhibited invasion and metastasis. Inhibition of EPC1 could inhibit the EMT in NPC cells. All of the above findings support the viewpoint that EPC1 plays a pro-cancer role in NPC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingming Xue ◽  
Hong Jiang ◽  
Jinjie Wang ◽  
Dongshan Wei

Background. LIM and SH3 domain protein 1 (LASP1), highly expressed in a variety of tumors, is considered as a novel tumor metastasis biomarker. However, it is unknown which signaling pathway works and how the signal transduces into cell nucleus to drive tumor progression by LASP1. The aim of this study is to explore the essential role of LASP1 in TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer cells. Methods. The gene and protein levels of LASP-1 were successfully silenced or overexpressed by LASP-1 shRNA lentivirus or pcDNA in TGF-β1-treated lung cancer cell lines, respectively. Then, the cells were developed EMT by TGF-β1. The cell abilities of invasion, migration, and proliferation were measured using Transwell invasion assay, wound healing assay, and MTT assay, respectively. Western blotting was used to observe the protein levels of EMT-associated molecules, including N-cadherin, vimentin, and E-cadherin, and the key molecules in the TGF-β1/Smad/Snail signaling pathway, including pSmad2 and Smad2, pSmad3 and Smad3, and Smad7 in cell lysates, as well as Snail1, pSmad2, and pSmad3 in the nucleus. Results. TGF-β1 induced higher LASP1 expression. LASP1 silence and overexpression blunted or promoted cell invasion, migration, and proliferation upon TGF-β1 stimulation. LASP1 also regulated the expression of vimentin, N-cadherin, and E-cadherin in TGF-β1-treated cells. Activity of key Smad proteins (pSmad2 and pSmad3) and protein level of Smad7 were markedly regulated through LASP1. Furthermore, LASP1 affected the nuclear localizations of pSmad2, pSmad3, and Snail1. Conclusion. This study reveals that LASP1 regulates the TGF-β1/Smad/Snail signaling pathway and EMT markers and features, involving in key signal molecules and their nuclear levels. Therefore, LASP1 might be a drug target in lung cancer.


Author(s):  
Jye-Yu Huang ◽  
Shu-Fen Peng ◽  
Fu-Shin Chueh ◽  
Po-Yuan Chen ◽  
Yi-Ping Huang ◽  
...  

ABSTRACT Gastric cancer has a poor prognosis; once cancer has metastasized, it can easily lead to patient death. Melittin is one of the major components extracted from the bee venom. It has been shown that melittin emerges antitumor activities against many human cancer cell lines. Our results indicated that melittin at 0.2-0.5 µm significantly reduced total cell viability in human gastric cancer AGS cells. At low concentrations (0.05-0.15 µm), melittin displayed antimetastasis effects and inhibited cell adhesion and colony formation. Besides, it inhibited cell motility and suppressed cell migration and invasion. Melittin inhibited the activities of MMP-2 and MMP-9 and the integrity of cell membrane in AGS cells. Furthermore, Western blotting results showed that melittin decreased the protein expressions of Wnt/BMP and MMP-2 signaling pathways. Based on these observations, melittin inhibited cell migration and invasion of AGS cells through multiple signaling pathways. It may be used to treat metastasized gastric cancers in the future.


Sign in / Sign up

Export Citation Format

Share Document