scholarly journals Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress

2020 ◽  
Vol 21 (18) ◽  
pp. 6817
Author(s):  
Shanshan Chu ◽  
Xiangqian Zhang ◽  
Kaiye Yu ◽  
Lingling Lv ◽  
Chongyuan Sun ◽  
...  

Low-phosphorus (low-P) stress has a significant limiting effect on crop yield and quality. Although the molecular mechanisms of the transcriptional level responsible for the low-P stress response have been studied in detail, the underlying epigenetic mechanisms in gene regulation remain largely unknown. In this study, we evaluated the changes in DNA methylation, gene expression and small interfering RNAs (siRNAs) abundance genome-wide in response to low-P stress in two representative soybean genotypes with different P-efficiencies. The DNA methylation levels were slightly higher under low-P stress in both genotypes. Integrative methylation and transcription analysis suggested a complex regulatory relationship between DNA methylation and gene expression that may be associated with the type, region, and extent of methylation. Association analysis of low-P-induced differential methylation and gene expression showed that transcriptional alterations of a small part of genes were associated with methylation changes. Dynamic methylation alterations in transposable element (TE) regions in the CHH methylation context correspond with changes in the amount of siRNA under low-P conditions, indicating an important role of siRNAs in modulating TE activity by guiding CHH methylation in TE regions. Together, these results could help to elucidate the epigenetic regulation mechanisms governing the responses of plants to abiotic stresses.

2019 ◽  
Author(s):  
Shanshan Chu ◽  
Kaiye Yu ◽  
Lingling Lv ◽  
Xiangqian Zhang ◽  
Chongyuan Sun ◽  
...  

Abstract Background: Phosphorus ( P ) is an essential nutrient for plant growth and metabolism, and low-P stress has a significant limiting effect on crop yield and quality. Although the molecular mechanisms of the transcriptional level responsible for the low-P stress response have been studied in detail, the underlying epigenetic mechanisms in gene regulation remain largely unknown. Results: In this study, we evaluated the changes in DNA methylation, gene expression and small interfering RNAs (siRNAs) abundance genome-wide in response to low-P stress in two representative soybean genotypes with different P-efficiencies. The methylome analysis revealed that the soybean genome presents ~67.54% mCG (mCG/CG), ~44.57% mCHG (mCHG/CHG) and ~3.79% mCHH (mCHH/CHH), respectively. The DNA methylation levels were slightly higher under low-P stress in both genotypes. Integral methylation and transcription analysis suggested a complex regulatory relationship between DNA methylation and gene expression that may be associated with the type, region, and extent of methylation. Association analysis of low-P-induced differential methylation and gene expression showed that transcriptional alterations of a small part of genes were associated with methylation changes. Dynamic methylation alterations in transposable element ( TE ) regions in the CHH methylation context correspond with changes in the amount of siRNA under low-P conditions, indicating an important role of siRNAs in modulating TE activity by guiding CHH methylation in TE regions. Conclusions: This is the first time to investigate low-P-induced methylome alterations and their relationship with changes of gene expression and siRNA abundance in soybean. The results in our study could help to elucidate the epigenetic regulation mechanisms governing the responses of plants to abiotic stresses.


2019 ◽  
Vol 105 (2) ◽  
pp. 453-467
Author(s):  
Amita Bansal ◽  
Nicole Robles-Matos ◽  
Paul Zhiping Wang ◽  
David E Condon ◽  
Apoorva Joshi ◽  
...  

Abstract Context Prenatal exposure to bisphenol A (BPA) is linked to obesity and diabetes but the molecular mechanisms driving these phenomena are not known. Alterations in deoxyribonucleic acid (DNA) methylation in amniocytes exposed to BPA in utero represent a potential mechanism leading to metabolic dysfunction later in life. Objective To profile changes in genome-wide DNA methylation and expression in second trimester human amniocytes exposed to BPA in utero. Design A nested case-control study was performed in amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, and gestational age at birth. Cases had amniotic fluid BPA measuring 0.251 to 23.74 ng/mL. Sex-specific genome-wide DNA methylation analysis and RNA-sequencing (RNA-seq) were performed to determine differentially methylated regions (DMRs) and gene expression changes associated with BPA exposure. Ingenuity pathway analysis was performed to identify biologically relevant pathways enriched after BPA exposure. In silico Hi-C analysis identified potential chromatin interactions with DMRs. Results There were 101 genes with altered expression in male amniocytes exposed to BPA (q < 0.05) in utero, with enrichment of pathways critical to hepatic dysfunction, collagen signaling and adipogenesis. Thirty-six DMRs were identified in male BPA-exposed amniocytes and 14 in female amniocyte analysis (q < 0.05). Hi-C analysis identified interactions between DMRs and 24 genes with expression changes in male amniocytes and 12 in female amniocytes (P < 0.05). Conclusion In a unique repository of human amniocytes exposed to BPA in utero, sex-specific analyses identified gene expression changes in pathways associated with metabolic disease and novel DMRs with potential distal regulatory functions.


2020 ◽  
Author(s):  
SAJ de With ◽  
APS Ori ◽  
T Wang ◽  
SL Pulit ◽  
E Strengman ◽  
...  

AbstractClozapine is an important antipsychotic drug. However, its use is often accompanied by metabolic adverse effects and, in rare instances, agranulocytosis. The molecular mechanisms underlying these adverse events are unclear. To gain more insights into the response to clozapine at the molecular level, we exposed lymphoblastoid cell lines (LCLs) to increasing concentrations of clozapine and measured genome-wide gene expression and DNA methylation profiles. We observed robust and significant changes in gene expression levels due to clozapine (n = 463 genes at FDR < 0.05) affecting cholesterol and cell cycle pathways. At the level of DNA methylation, we find significant changes upstream of the LDL receptor, in addition to global enrichments of regulatory, immune and developmental pathways. By integrating these data with human tissue gene expression levels obtained from the Genotype-Tissue Expression project (GTEx), we identified specific tissues, including liver and several tissues involved in immune, endocrine and metabolic functions, that clozapine treatment may disproportionately affect. Notably, differentially expressed genes were not enriched for genome-wide disease risk of schizophrenia or for known psychotropic drug targets. However, we did observe a nominally significant association of genetic signals related to total cholesterol and low-density lipoprotein levels. Together, these results shed light on the biological mechanisms through which clozapine functions. The observed associations with cholesterol pathways, its genetic architecture and specific tissue effects may be indicative of the metabolic adverse effects observed in clozapine users. LCLs may thus serve as a useful tool to study these molecular mechanisms further.


2019 ◽  
Author(s):  
Siming Zhang ◽  
Xianglong Zhang ◽  
Shining Ma ◽  
Carolin Purmann ◽  
Kasey Davis ◽  
...  

AbstractHeterozygous deletions in the 15q13.3 region are associated with several neuropsychiatric disorders including autism, schizophrenia, and attention deficit hyperactivity disorder. Several genes within the 15q13.3 deletion region may play a role in neuronal dysfunction, based on association studies in humans and functional studies in mice, but the intermediate molecular mechanisms remain unknown. We analyzed the genome-wide effects of the 15q13.3 microdeletion on the transcriptome and epigenome. Induced pluripotent stem cell (iPSC) lines from three patients with the typical heterozygous 15q13.3 microdeletion and three sex-matched controls were generated and converted into induced neurons (iNs) using the neurogenin-2 induction method. We analyzed genome-wide gene expression using RNA-Seq, genome-wide DNA methylation using SeqCap-Epi, and genome-wide chromatin accessibility using ATAC-Seq, in both iPSCs and iNs. In both cell types, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Further, we observed global effects of the deletion on the transcriptome and epigenome, with the effects being cell type specific and occurring at discrete loci. Several genes and pathways associated with neuropsychiatric disorders and neuronal development were significantly altered, including Wnt signaling, ribosome biogenesis, DNA binding, and clustered protocadherins. This molecular systems analysis of a large neuropsychiatric microdeletion can also be applied to other brain relevant chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2020 ◽  
Vol 14 ◽  
Author(s):  
Mette Soerensen ◽  
Dominika Marzena Hozakowska-Roszkowska ◽  
Marianne Nygaard ◽  
Martin J. Larsen ◽  
Veit Schwämmle ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


Sign in / Sign up

Export Citation Format

Share Document