scholarly journals The Risk of Systemic Diseases in Those with Psoriasis and Psoriatic Arthritis: From Mechanisms to Clinic

2020 ◽  
Vol 21 (19) ◽  
pp. 7041
Author(s):  
Yu Ri Woo ◽  
Chul Jong Park ◽  
Hoon Kang ◽  
Jung Eun Kim

Psoriasis and psoriatic arthritis (PsA) have been recently considered as chronic systemic inflammatory disorders. Over the past decades, enormous evidence indicates that patients with psoriasis and PsA have a higher risk of developing various comorbidities including cardiovascular disease, metabolic disease, cancers, infections, autoimmune disease, and psychiatric diseases. However, reported risks of some comorbidities in those with psoriasis and PsA are somewhat different according to the research design. Moreover, pathomechanisms underlying comorbidities of those with psoriasis and PsA remain poorly elucidated. The purpose of this review is to provide the most updated comprehensive view of the risk of systemic comorbidities in those with psoriasis and PsA. Molecular mechanisms associated with the development of various comorbidities in those with psoriasis and PsA are also reviewed based on recent laboratory and clinical investigations. Identifying the risk of systemic comorbidities and its associated pathomechanisms in those with psoriasis and PsA could provide a sufficient basis to use a multi-disciplinary approach for treating patients with psoriasis and PsA.


Author(s):  
Ashton Faulkner

The endothelium acts as a gatekeeper, controlling the movement of biomolecules between the circulation and underlying tissues. Although conditions of metabolic stress are traditionally considered as causes of endothelial dysfunction, a principal driver of cardiovascular disease, accumulating evidence suggests that endothelial cells are also active players in maintaining local metabolic homeostasis, in part, through regulating the supply of metabolic substrates, including lipids and glucose, to energy-demanding organs. Therefore, endothelial dysfunction, in terms of altered trans-endothelial trafficking of these substrates, may in fact be an early contributor towards the establishment of metabolic dysfunction and subsequent cardiovascular disease. Understanding the molecular mechanisms that underpin substrate trafficking through the endothelium represents an important area within the vascular and metabolism fields that may offer an opportunity for identifying novel therapeutic targets. This mini-review summarises the emerging mechanisms regulating the trafficking of lipids and glucose through the endothelial barrier and how this may impact on the development of cardio-metabolic disease.



2021 ◽  
Vol 11 ◽  
Author(s):  
Olivia D. Cooney ◽  
Prabhakar R. Nagareddy ◽  
Andrew J. Murphy ◽  
Man K. S. Lee

Over the past decade, the use of probiotics to modify the gut microbiome has become a public spotlight in reducing the severity of a number of chronic diseases such as autoimmune disease, diabetes, cancer and cardiovascular disease. Recently, the gut microbiome has been shown to play an important role in regulating bone mass. Therefore, targeting the gut microbiome may be a potential alternative avenue for those with osteopenia or osteoporosis. In this mini-review, we take the opportunity to delve into how the different components of the gut work together and how the gut-related diseases impact on bone health.



2020 ◽  
Vol 5 (2) ◽  
pp. 439-456
Author(s):  
Jenny L. Pierce

Purpose This review article provides an overview of autoimmune diseases and their effects on voice and laryngeal function. Method A literature review was conducted in PubMed. Combinations of the following keywords were used: “autoimmune disease and upper airway,” “larynx,” “cough,” “voice,” “dysphonia,” and “dyspnea.” Precedence was given to articles published in the past 10 years due to recent advances in this area and to review articles. Ultimately, 115 articles were included for review. Results Approximately 81 autoimmune diseases exist, with 18 of those highlighted in the literature as having laryngeal involvement. The general and laryngeal manifestations of these 18 are discussed in detail, in addition to the clinical implications for a laryngeal expert. Conclusions Voice, breathing, and cough symptoms may be an indication of underlying autoimmune disease. However, these symptoms are often similar to those in the general population. Appropriate differential diagnosis and timely referral practices maximize patient outcomes. Guidelines are provided to facilitate correct diagnosis when an autoimmune disease is suspected.



2008 ◽  
Vol 28 (01/02) ◽  
pp. 85-88 ◽  
Author(s):  
D. Fuchs ◽  
H. Daniel ◽  
U. Wenzel

SummaryEpidemiological studies indicate that the consumption of soy-containing food may prevent or slow-down the development of cardiovascular disease. In endothelial cells application of a soy extract or a combination of the most abundant soy isoflavones genistein and daidzein both inhibited apoptosis, a driving force in atherosclerosis development, when applied in combination with oxidized LDL or homocysteine. Proteome analysis revealed that the stressorinduced alteration of protein expression profile was reversed by the soy extract or the genistein/daidzein mixture. Only few protein entities that could be functionally linked to mitochondrial dysfunction were regulated in common by both application forms of isoflavones. A dietary intervention with isoflavone-enriched soy extract in postmenopausal women, who generally show strongly increased cardiovascular risk due to diminished estrogen production, led to significant alterations in the steady state levels of proteins from mononuclear blood cells. The proteins identified by proteome analysis revealed that soy isoflavones may increase the anti-inflammatory response in blood mononuclear cells thereby contributing to the atherosclerosispreventive activities of a soy-rich diet. Conclusion: By proteome analysis protein targets were identified in vitro in endothelial cells that respond to soy isoflavones and that may decipher molecular mechanisms through which soy products exert their protective effects in the vasculature.



2019 ◽  
Author(s):  
Christophe Bourges ◽  
Abigail F. Groff ◽  
Oliver S. Burren ◽  
Chiara Gerhardinger ◽  
Kaia Mattioli ◽  
...  


2020 ◽  
Vol 26 (12) ◽  
pp. 1251-1262 ◽  
Author(s):  
Octavio Binvignat ◽  
Jordi Olloquequi

: The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. : Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. : In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.



2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.



2020 ◽  
Vol 14 ◽  
Author(s):  
Abhishek Kumar ◽  
Neeraj Masand ◽  
Vaishali M. Patil

Abstract: Breast cancer is the most common and highly heterogeneous neoplastic disease comprised of several subtypes with distinct molecular etiology and clinical behaviours. The mortality observed over the past few decades and the failure in eradicating the disease is due to the lack of specific etiology, molecular mechanisms involved in initiation and progression of breast cancer. Understanding of the molecular classes of breast cancer may also lead to new biological insights and eventually to better therapies. The promising therapeutic targets and novel anti-cancer approaches emerging from these molecular targets that could be applied clinically in the near future are being highlighted. In addition, this review discusses some of the details of current molecular classification and available chemotherapeutics



2021 ◽  
Vol 73 (2) ◽  
pp. 323-345
Author(s):  
Samuel Kohtala

AbstractOver the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine’s effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine’s complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine’s rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine’s action.



Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.



Sign in / Sign up

Export Citation Format

Share Document