scholarly journals Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells

2020 ◽  
Vol 21 (23) ◽  
pp. 9015
Author(s):  
Daniel Janitschke ◽  
Anna A. Lauer ◽  
Cornel M. Bachmann ◽  
Martin Seyfried ◽  
Heike S. Grimm ◽  
...  

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.

2008 ◽  
Vol 190 (19) ◽  
pp. 6398-6408 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Lucie Bartonickova ◽  
Wiebke Behrens ◽  
Birgit Brenneke ◽  
Jessika Schulze ◽  
...  

ABSTRACT The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


2000 ◽  
Vol 279 (3) ◽  
pp. H1071-H1078 ◽  
Author(s):  
R. Ray Morrison ◽  
Rachael Jones ◽  
Anne M. Byford ◽  
Alyssa R. Stell ◽  
Jason Peart ◽  
...  

The role of A1adenosine receptors (A1AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A1AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in transgenic versus wild-type hearts (44.8 ± 3.4% baseline vs. 25.6 ± 1.7%). Preconditioning improved functional recovery in wild-type hearts from 25.6 ± 1.7% to 37.4 ± 2.2% but did not change recovery in transgenic hearts (44.8 ± 3.4% vs. 44.5 ± 3.9%). In isovolumically contracting hearts, pretreatment with selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine attenuated the improved functional recovery in both wild-type preconditioned (74.2 ± 7.3% baseline rate of pressure development over time untreated vs. 29.7 ± 7.3% treated) and transgenic hearts (84.1 ± 12.8% untreated vs. 42.1 ± 6.8% treated). Preconditioning wild-type hearts reduced LDH release (from 7,012 ± 1,451 to 1,691 ± 1,256 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 32.3 ± 11.5%). Preconditioning did not affect LDH release or infarct size in hearts overexpressing A1AR. Compared with wild-type hearts, A1AR overexpression markedly reduced LDH release (from 7,012 ± 1,451 to 917 ± 1,123 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 6.5 ± 2.1%). These data demonstrate that murine preconditioning involves endogenous activation of A1AR. The beneficial effects of preconditioning and A1AR overexpression are not additive. Taken with the observation that A1AR blockade equally eliminates the functional protection resulting from both preconditioning and transgenic A1AR overexpression, we conclude that the two interventions affect cardioprotection via common mechanisms or pathways.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
Masanori Takahashi ◽  
Noriko Osumi

Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kai Fang ◽  
Ming Gu

Crocin is a carotenoid compound which possesses multiple biological activities. Our and other laboratory’s previous findings show that crocin alleviates obesity and type 2 diabetes-related complications. We have found that crocin activates AMP-activated protein kinase (AMPK) signaling and inhibition of AMPK suppresses crocin-induced protective effects. However, the causal role of AMPK activation in the biological role of crocin is still not verified. In the present study, we showed that crocin markedly inhibits the changes of glucose metabolic parameters and serum lipid profiles in wild type diabetic mice. In AMPKα KO diabetic mice, those protective effects of crocin against glucose and lipid metabolic dysfunction were abolished. These results demonstrated AMPK activation was responsible for the beneficial effects of crocin on metabolic dysfunction. Moreover, we have shown that the antiobese effect of crocin has been abolished by the deficiency of AMPKα. We also showed that crocin induced a significant decrease of CDK5 protein level in wild type diabetic mice, while this effect was abolished in AMPKα KO diabetic mice. The regulation of downstream targets of CDK5/PPARγ by crocin was abolished by the deficiency of AMPK. In conclusion, our study verified that activation of AMPK is involved in crocin-induced protective effects against glucose and lipid metabolic dysfunction. Activation of AMPK downregulates the protein level of CDK5, followed by the decrease of PPARγ phosphorylation, leading to the inhibition of adipose formation and metabolic dysfunction. Our study provides new insights into the mechanism of protective effects of crocin and interaction of AMPK and CDK5/PPARγ signaling.


2019 ◽  
Vol 317 (6) ◽  
pp. E973-E983 ◽  
Author(s):  
Annie Hasib ◽  
Chandani K. Hennayake ◽  
Deanna P. Bracy ◽  
Aimée R. Bugler-Lamb ◽  
Louise Lantier ◽  
...  

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient ( cd44−/−) mice and wild-type littermates ( cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44−/− mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44−/− mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44−/− mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44−/− compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44−/− mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44−/− mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


2015 ◽  
Vol 724 ◽  
pp. 53-56
Author(s):  
Qin Zhang ◽  
Lin Li ◽  
You Mo

The housing construction grouting technique is to select a specific pressure feed approach to pour the slurry in gel into the loose soil or the rock cracks with water. The slurry, through condensation and the particles consolidation in this category, will be filled into the rock cracks in the section so as to improve the inherent nature of the soil and the mechanical properties of the other substances. During the construction period, the slurry can be fed into the injected holes within this segment through the unique role of the pressure. The small opening surrounding the grouting holes, the preset requirements will be met. Therefore, it is necessary to clarify the specific applications of grouting techniques.


2019 ◽  
Author(s):  
Levente Kovács ◽  
Ágota Nagy ◽  
Margit Pál ◽  
Peter Deák

ABSTRACTDeubiquitinating (DUB) enzymes free covalently linked ubiquitins from ubiquitin-ubiquitin and ubiquitin-protein conjugates, and thereby maintain the equilibrium between free and conjugated ubiquitins and regulate ubiquitin-mediated cellular processes. The present genetic analyses of mutant phenotypes demonstrate that loss of Usp14 function results in male sterility, with defects in spermatid individualization and reduced testicular free monoubiquitin levels. These phenotypes were rescued by germline specific overexpression of wild type Usp14. Synergistic genetic interactions with Ubi-p63E and cycloheximide sensitivity suggest that ubiquitin shortage is a primary cause of male sterility. In addition, Usp14 is predominantly expressed in testes in Drosophila, and differential expression patterns may be causative of testis-specific loss of function Usp14 phenotypes. Collectively, these results suggest a major role of Usp14 in maintaining normal steady state free monoubiquitin levels during the later stages of Drosophila spermatogenesis.


2021 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Pilar Marcos ◽  
Rafael Coveñas

To know the processes involved in feeding, the dysregulation of hypothalamic neuropeptides promoting anorexigenic/orexigenic mechanisms must be investigated. Many neuropeptides are involved in this behavior and in overweight/obesity. Current pharmacological strategies for the treatment of obesity are unfortunately not very effective and, hence, new therapeutic strategies must be investigated and developed. Due to the crucial role played by orexins in feeding behavior, the aim of this review is to update the involvement of the orexinergic system in this behavior. The studies performed in experimental animal models and humans and the relationships between the orexinergic system and other substances are mentioned and discussed. Promising research lines on the orexinergic system are highlighted (signaling pathways, heterogeneity of the hypothalamic orexinergic neurons, receptor-receptor interaction, and sex differences). Each of the orexin 1 and 2 receptors plays a unique role in energy metabolism, exerting a differential function in obesity. Additional preclinical/clinical studies must be carried out to demonstrate the beneficial effects mediated by orexin receptor antagonists. Because therapies applied are in general ineffective when they are directed against a single target, the best option for successful anti-obesity treatments is the development of combination therapies as well as the development of new and more specific orexin receptor antagonists.


2006 ◽  
Vol 75 (1) ◽  
pp. 452-461 ◽  
Author(s):  
Nisheeth Agarwal ◽  
Samuel C. Woolwine ◽  
Sandeep Tyagi ◽  
William R. Bishai

ABSTRACT Alternate sigma factors have been implicated in the survival of mycobacteria in response to specific stresses. To characterize the role of SigM in Mycobacterium tuberculosis, a sigM deletion mutant was generated by allelic exchange in the virulent CDC1551 strain. Comparing the wild-type and ΔsigM strains by complete genomic microarray, we observed a low level of baseline expression of sigM in wild-type M. tuberculosis and no significant differences in the gene expression patterns between these two strains. Alternatively, a SigM-overexpressing M. tuberculosis strain was constructed and microarray profiling revealed SigM-dependent expression of a relatively small group of genes, which included four esat-6 homologues: esxE, esxF, esxT, and esxU. An assessment of SigM-dependent promoters from the microarray analysis revealed a putative consensus sequence for M. tuberculosis SigM of −35 GGAAC and −10 CGTCR. In vitro expression studies showed that M. tuberculosis sigM transcripts accumulate slightly in stationary phase and following heat shock. To understand the role of SigM in pathogenesis, the M. tuberculosis sigM deletion strain was compared with the isogenic wild-type strain and the complemented mutant strain for survival in murine macrophages and in the mouse model. The mutant was found to have similar abilities to survive in both the resting and activated J774A.1 macrophages. Mouse organ bacterial burdens indicated that the mutant proliferated and persisted at the same level as that of the wild-type and complemented strains in lung and spleen tissues. In time-to-death experiments in the mouse model, the ΔsigM mutant exhibited lethality times comparable to those observed for the wild-type and complemented strains. These data indicate that M. tuberculosis SigM governs the expression of a small set of genes, including four esat-6 homologues, and that the loss of sigM does not confer a detectable virulence defect in the macrophages and mouse models of infection.


2001 ◽  
Vol 12 (10) ◽  
pp. 2987-3003 ◽  
Author(s):  
Audrey P. Gasch ◽  
Mingxia Huang ◽  
Sandra Metzner ◽  
David Botstein ◽  
Stephen J. Elledge ◽  
...  

Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. The human ATR kinase and its homolog in yeast, MEC1, play central roles in transducing the damage signal. To characterize the role of the Mec1 pathway in modulating the cellular response to DNA damage, we used DNA microarrays to observe genomic expression inSaccharomyces cerevisiae responding to two different DNA-damaging agents. We compared the genome-wide expression patterns of wild-type cells and mutants defective in Mec1 signaling, includingmec1, dun1, and crt1 mutants, under normal growth conditions and in response to the methylating-agent methylmethane sulfonate (MMS) and ionizing radiation. Here, we present a comparative analysis of wild-type and mutant cells responding to these DNA-damaging agents, and identify specific features of the gene expression responses that are dependent on the Mec1 pathway. Among the hundreds of genes whose expression was affected by Mec1p, one set of genes appears to represent an MEC1-dependent expression signature of DNA damage. Other aspects of the genomic responses were independent of Mec1p, and likely independent of DNA damage, suggesting the pleiotropic effects of MMS and ionizing radiation. The complete data set as well as supplemental materials is available at http://www-genome.stanford.edu/mec1 .


Sign in / Sign up

Export Citation Format

Share Document