scholarly journals Up-Regulated Expression of Pro-Apoptotic Long Noncoding RNA lincRNA-p21 with Enhanced Cell Apoptosis in Lupus Nephritis

2020 ◽  
Vol 22 (1) ◽  
pp. 301
Author(s):  
Yi-Cheng Chen ◽  
Pin-Yu Kuo ◽  
Yu-Chi Chou ◽  
Hao-Earn Chong ◽  
Yu-Tung Hsieh ◽  
...  

Accelerated cell apoptosis with dysregulated long noncoding RNAs is the crucial pathogenesis in lupus nephritis (LN). Pro-apoptotic lincRNA-p21 was studied in LN patients, cell lines with lentivirus-mediated overexpression and CRISPR interference (CRISPRi)-conducted repression, and a mouse model. Clinical samples were from patients and age/sex-matched controls. Expression of lincRNA-p21 and endogenous RNA target miR-181a, were examined in mononuclear and urine cells. Guide RNA sequences targeting lincRNA-p21 were cloned into CRISPRi with dCas9/ Krüppel-associated box (KRAB) domain. LincRNA-p21-silened transfectants were investigated for apoptosis and miR-181a expression. LincRNA-p21-overexpressed cells were evaluated for apoptosis and p53-related down-stream molecules. Balb/C mice were injected with pristane to induce LN and examined for apoptosis and lincRNA-p21. Higher lincRNA-p21 levels were found in LN mononuclear and urine cells, positively correlated with activity. There were lower miR-181a levels in LN mononuclear cells, negatively correlated with activity. Doxorubicin-induced apoptotic cells had up-regulated lincRNA-p21 levels. CRISPRi with dCas9/KARA domain showed efficient repression ability on transcription initiation/elongation. CRISPRi-conducted lincRNA-p21-silenced transfectants displayed reduced apoptosis with up-regulated miR-181a levels, whereas lentivirus-mediated lincRNA-p21-overexpressed cells revealed enhanced apoptosis with up-regulated downstream PUMA/Bax expression. LN mice had glomerular apoptosis with progressive increased lincRNA-p21 levels. Our results demonstrate up-regulated lincRNA-p21 expression in LN, implicating a potential diagnostic marker and therapeutic target.

2020 ◽  
Author(s):  
Yi-Cheng Chen ◽  
Pin-Yu Kuo ◽  
Chao-Liang Wu ◽  
Yu-Chi Chou ◽  
Hao-Earn Chong ◽  
...  

Abstract Background: Accelerated cell apoptosis is a crucial pathogenic mechanism in lupus nephritis (LN) with dysregulated expression levels of long noncoding RNAs (lncRNAs). The expression of pro-apoptotic lincRNA-p21 and its competing endogenous RNA target miR-181a were studied in LN patients, human kidney cell and T-lymphocyte lines with CRISPR interference-conducted repression and lentiviral vector-mediated overexpression of lincRNA-p21, and a mouse LN model. Methods: Clinical samples were collected from LN patients with higher disease activity and control subjects including lupus patients without renal involvement and age/sex-matched healthy controls (HCs). The expression of lincRNA-p21, H19 (anti-apoptotic lncRNA) and miR-181a were examined in peripheral blood mononuclear cells (PBMNCs) and urine cells, and analyzed for clinical correlation. Cell lines were treated with doxorubicin (Dox) to induce apoptosis and evaluate for the expression of lincRNA-p21, caspase 3 and p21. LincRNA-p21-silened HEK 293T and Jurkat transfectants were examined for apoptosis and miR-181a expression. LincRNA-p21-overexpressed HK-2 cells were examined for apoptosis and p53-related down-stream molecules levels. Female Balb/C mice were injected with pristane to induce LN, and examined for the expression of anti-DNA, proteinuria, lincRNA-p21, caspase 3 and p21 as well as in situ apoptosis. Results: Up-regulated expression of lincRNA-p21 rather than H19 were identified in PBMNCs from LN patients, positively correlated with disease activity and proteinuria amount. Higher lincRNA-p21 levels were identified in LN CD4+T cells than other subpopulations. LN urine cells had greater lincRNA-p21 levels than HCs. There were lower miR-181a levels in PBMNCs from LN patients, negatively correlated with disease activity. Dox-induced apoptotic cell lines had up-regulated levels of lincRNA-p21, caspase 3 and p21, whereas down-regulated miR-181a expression with decreased TCRζchain and IL-2 levels was identified in Jurkat cells. LincRNA-p21-silenced transfectants displayed reduced apoptosis with up-regulated miR-181a expression. LincRNA-p21-overexpressed HK-2 cells revealed enhanced apoptosis with up-regulated expression of downstream PUMA and Bax molecules. LN mice had in situ apoptosis and progressively increased anti-dsDNA, proteinuria and renal lincRNA-p21 levels with up-regulated expression of caspase 3 and p21.Conclusions: By using clinical samples, human cell lines and a mouse model, we demonstrate up-regulated expression of lincRNA-p21 in LN, implicating a potential activity biomarker and therapeutic target.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Wang ◽  
Jiao Liu ◽  
Wenjie Xie ◽  
Guang Li ◽  
Lan Yao ◽  
...  

Background. Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury during which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a multiple function long noncoding RNA that was found overexpressed during acute lung injury. However, the roles of MALAT1 in ARDS patients are still unknown. Methods. Total RNA was extracted from the plasma, plasma exosome, and peripheral blood mononuclear cells (PBMCs) from 65 ARDS patients and 36 healthy controls. The MALAT1 and six candidate miRNAs levels were detected by qRT-PCR. The interaction between MALAT1 and miR-425 was predicted using a bioinformatics tool and verified by dual luciferase assay. Exosomes from ARDS patients were cultured with A549 and HFL-1 cells to confirm the delivery of miR-425 by exosomes. Cell apoptosis and viability were determined by flow cytometry and MTT assay. Results. We found MALAT1 was significantly increased in the ARDS patients’ plasma and PBMCs. The MALAT1 level in PBMCs was negatively correlated with exosomal miR-425 level. MALAT1 interacted with miR-425 and protected phosphatase and tensin homolog (PTEN) expression in A549 and HFL-1 cells. Exosomes from ARDS patients delivered less miR-425 into A549 and HFL-1 cells and induced cell apoptosis via upregulating PTEN. Conclusion. This study identified increased MALAT1 and decreased miR-425 in ARDS patients and unveiled their roles during the pathogenesis of ARDS.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.


2018 ◽  
Vol 50 (6) ◽  
pp. 2203-2215 ◽  
Author(s):  
Xiaofei Peng ◽  
Tao Yang ◽  
Liyu He ◽  
Xian Chen ◽  
Yafeng Jiang ◽  
...  

Background/Aims: Tonsillectomy may be an important method to achieve a long-term remission of IgAN, but patients’ physical status may limit their access to this surgery. We proposed an encouraging solution through inhibiting GADD34 expression in order to promote tonsillar mononuclear cells (TMCs) apoptosis and reduce nephropathic IgA secretion. Methods: A total of 12 IgAN and 9 non-IgAN patients were involved from March 2015 to May 2016. After TMCs were extracted by density gradient centrifugation and stimulated by inactivated hemolytic streptococcus, the mRNA and protein expression of GADD34, GRP78, CHOP, Bcl-2, Bcl-XL, AID, Iα-Cα, and cleaved caspase-3 were examined by fluorescent RT-PCR and Western blotting. Guanabenz treatment and siRNA interference were applied to downregulate GADD34 in tonsillar mononuclear cells from IgAN patients, and P-eIF2α expression was examined by Western Blotting. Cell apoptosis was evaluated by Annexin V FITC/PI flowcytometry, and IgA secretion in cultural supernatant was inspected by enzyme linked immunosorbent assay. Results: After stimulation, the expression of GADD34 was significantly increased in IgAN patients (P< 0.05). Cell apoptosis was mitigated and IgA secretion level was elevated (P< 0.05). To be noticed, CHOP expression had no significant difference between two groups. After guanabenz treatment and siRNA interference, a prolonged elevation of P-eIF2α expression was observed. Cell apoptosis was reinforced and IgA secretion level was decreased (P< 0.05). Conclusion: GADD34 may be a potential therapeutic target for IgAN treatment due to its effect on cell apoptosis.


2021 ◽  
Author(s):  
Wu Biao ◽  
Yufeng Chen ◽  
Junlong Zhong ◽  
Shuping Zhong ◽  
Bin Wang ◽  
...  

Abstract Background: Rheumatoid arthritis (RA) is a common autoimmune disease that can occur at any age. If treatment is delayed, RA can seriously affect the patients’ quality of life. However, there is no diagnostic criteria for RA and the positive predictive value of the current biomarkers is moderate. Objective: to identify RA-associated susceptibility genes and explore their potential as a novel biomarker for diagnosis and evaluation of the prognosis of RA.Methods: Peripheral blood mononuclear cells (PBMCs) were collected from healthy human donors and RA patients. RNA-seq analyses were performed to identify the differentially expressed genes (DEGs) between RA and control samples. The PBMCs-mRNA in DEGs were further subjected to enrichment analysis. Furthermore, the hub genes and key modules associated with RA were screened by bioinformatics analyses. Then, the expression of hub genes in RA were assessed in mRNA expression profiles. Next, real time-quantitative PCR (RT-qPCR) analyses were performed to further confirm the expression of the hub genes from the PBMCs that collected from 47 patients with RA and 40 healthy controls. Finally, we evaluated the clinical characters for the candidate mRNAs.Results: RNA-seq analyses revealed the expression of 178 mRNAs from PBMCs were disregulated between the healthy controls and the RA patients. Bioinformatics analyses revealed 10 hub mRNAs. The top 3 significant functional modules screened from PPI network functionally were involved in DNA replication origin binding, chemokine activity, etc. After validating the 10 hub mRNAs in GSE93272 dataset and clinical samples, we identified 3 candidate mRNAs, including ASPM, DTL and RRM2. Among which, RRM2 showed great capacity in discriminating between remissive RA and active RA. Significant correlations were observed between DTL and IL-8, TNF-α, between RRM2 and CDAI, DAS-28, tender joints and swollen joints, respectively. The AUC values of ASPM, DTL and RRM2 were 0.654, 0.995 and 0.990, respectively.Conclusion: We successfully identified multiple candidate mRNAs associated with RA. RRM2 showed high diagnosis efficiency with the AUC of 0.990 (sensitivity=100%, specificity=97.5%). And RRM2 severed as an additional biomarker for evaluating disease activity. The findings provided a novel candidate biomarker for diagnosis and evaluation of the prognosis of RA.


Sign in / Sign up

Export Citation Format

Share Document