scholarly journals All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles

2021 ◽  
Vol 22 (2) ◽  
pp. 854
Author(s):  
Paweł Kowalczyk ◽  
Mateusz Szymczak ◽  
Magdalena Maciejewska ◽  
Łukasz Laskowski ◽  
Magdalena Laskowska ◽  
...  

Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.

2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


2017 ◽  
Vol 7 (4) ◽  
pp. 263 ◽  
Author(s):  
Rattanamanee Chomchan ◽  
Sunisa Siripongvutikorn ◽  
Panupong Puttarak

Background: Plants are the major food sources which possess marvelous health benefits and wellness to human. To date, the effort to improve composites in plants using bio-fortification technique is expedient in order to obtain super plant foods. Selenium (Se) is an essential trace element works on antioxidant system in living things. Se has been bio-fortified into plants worldwide to increase Se content in plants as well as improve some plant bioactive compounds and biological properties. However, restricted documents were elucidated on the summary and underlying mechanisms which provide beneficial effects on plant phytochemicals and bioactivities improvement. This review attempts to study available literatures on Se bio-fortified plants and clarified possible routes that Se may effect to plants. Increasing the content of Se bio-fortified to plants resulted in both positive and negative effects. The appropriate exogenous concentration of Se bio-fortified to individual plants which can support growth or induce them to the early stage of stress are the vital strategic to provide desired effects on an improvement of phytochemicals, for example, chlorophyll, phenolic compounds, ascorbic acid. Moreover, the greater antioxidant, anti-cancer and prebiotic properties were also reported while higher doses of Se were toxic to plants. Consequently, Se bio-fortification can be claimed as a unique strategy to improve plant treasures.Keywords: Selenium, Bio-fortification, Phytochemicals, Bioactivities


Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


2021 ◽  
pp. 1-36
Author(s):  
Rambod Abiri ◽  
Narges Atabaki ◽  
Ruzana Sanusi ◽  
Sonia Malik ◽  
Ramin Abiri ◽  
...  

2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.


2017 ◽  
Vol 6 (5) ◽  
Author(s):  
Zahra Abbasi ◽  
Sholeh Feizi ◽  
Elham Taghipour ◽  
Parinaz Ghadam

AbstractSilver nanoparticles (AgNPs) have widespread applications. Recently, the synthesis of NPs using plant extract has attracted much attention. In this study, with an easy and rapid process at room temperature, AgNPs were produced by the aqueous extract of dried


2021 ◽  
Vol 25 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Javadi ◽  
Fatemeh Mohajer

: The role of oxindole derivatives is discussed as starting materials in diverse organic reactions including two and more components between the years 2014 until 2020. Oxindoles are famous because of their biological properties for instance chromanone-fused polycyclic pyrrolidinyl-dispirooxindoles, functionalized polycyclic spiro-fused carbocyclicoxindole, and 3,3-disubstituted oxindoles have anti-cancer, anti-tumor, and anti-microbial properties, respectively. Therefore, various methods for synthesizing the oxindole structures have received more attention in organic chemistry.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 652 ◽  
Author(s):  
Wang Lee ◽  
Eungwang Kim ◽  
Hyun-Ju Cho ◽  
Taejoon Kang ◽  
Bongsoo Kim ◽  
...  

A silver nanoparticle is one of the representative engineered nanomaterials with excellent optical, electrical, antibacterial properties. Silver nanoparticles are being increasingly used for medical products, water filters, and cosmetics, etc. However, silver nanoparticles are known to cause adverse effects on the ecosystem and human health. To utilize silver nanoparticles with minimized negative effects, it is important to understand the behavior of silver nanoparticles released to the environment. In this study, we compared toxicity behaviors of citrate-stabilized silver nanoparticles with polyethylene glycol coated silver nanoparticles in two different ionic environments, which are aquatic environments for developing zebrafish embryo. Depending on the composition of the ionic environment, citrate-stabilized silver nanoparticles and polyethylene glycol coated silver nanoparticles exhibited different behaviors in dissolution, aggregation, or precipitation, which governed the toxicity of silver nanoparticles on zebrafish embryos.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1155
Author(s):  
Areej A. Al-Khalaf ◽  
Hossam M. Hassan ◽  
Aisha M Alrajhi ◽  
Rania Ali El Hadi Mohamed ◽  
Wael N. Hozzein

Background: The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. Purpose: To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. Materials and Methods: We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV–vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography–mass spectrometry (LC–MS)-based metabolomics analysis and molecular docking were also applied.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Sign in / Sign up

Export Citation Format

Share Document