scholarly journals Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease

2021 ◽  
Vol 22 (4) ◽  
pp. 2213
Author(s):  
Natalia Diaz-Garrido ◽  
Cecilia Cordero ◽  
Yenifer Olivo-Martinez ◽  
Josefa Badia ◽  
Laura Baldomà

Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1327 ◽  
Author(s):  
Loredana Leggio ◽  
Greta Paternò ◽  
Silvia Vivarelli ◽  
Francesca L’Episcopo ◽  
Cataldo Tirolo ◽  
...  

Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor–ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson′s disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood–brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.


2020 ◽  
Vol 22 (1) ◽  
pp. 153
Author(s):  
Kiruphagaran Thangaraju ◽  
Sabari Nath Neerukonda ◽  
Upendra Katneni ◽  
Paul W. Buehler

Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marta Tapparo ◽  
Margherita Alba Carlotta Pomatto ◽  
Maria Chiara Deregibus ◽  
Elli Papadimitriou ◽  
Claudia Cavallari ◽  
...  

Extracellular vesicles (EVs) have emerged in the last decades as a cell-to-cell communication mechanism. One of their mechanism of action is the direct delivery of their cargo, composed of bioactive molecules to target cells. Different methods (direct electroporation, cell transfection, chemical transfection) were developed to vehicle therapeutic molecules through EVs. However, most of these techniques presented some limitations such as EV disruption and aggregation. In the present study, we demonstrated that a direct temperature-controlled co-incubation of EVs with defined miRNAs is a stable method to deliver information to target cells without affecting EV constitutive content. We chose serum as an easy and abundant source of EVs applicable to autologous treatment after EV modification. Exogenous cel-miR-39 loaded on serum EVs (SEVs) was taken up by human endothelial cells, demonstrating an adequate miRNA loading efficacy based on the co-incubation method. Moreover, SEVs co-incubation with the angiomiRNA-126 (miR-126) enhanced their angiogenic properties in vitro and in vivo by increasing the capacity to induce capillary-like structure formation of human endothelial cells. MiR-126 loaded EVs were also shown to stimulate mouse endothelial cells to invade Matrigel plugs and create more vessels with respect to the EV naive counterpart. When SEVs were loaded with miR-19b, an anti-angiogenic miRNA, they were able to reduce Vascular endothelial growth factors (VEGF) pro-angiogenic capacity, supporting the selective biological effect mediated by the carried miRNA. Lastly, we identified Annexin A2 (ANXA2) as one of the molecules involved in the exogenous RNA binding to serum EV surface, favoring miRNA delivery to target endothelial cells for potential therapeutic application.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yifan Ma ◽  
Shiyan Dong ◽  
Xuefeng Li ◽  
Betty Y. S. Kim ◽  
Zhaogang Yang ◽  
...  

Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs’ therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.


2018 ◽  
Author(s):  
Yahui Ji ◽  
Dongyuan Qi ◽  
Linmei Li ◽  
Haoran Su ◽  
Xiaojie Li ◽  
...  

AbstractExtracellular vesicles (EVs) are important intercellular mediators regulating health and disease. Conventional EVs surface marker profiling, which was based on population measurements, masked the cell-to-cell heterogeneity in the quantity and phenotypes of EVs secretion. Herein, by using spatially patterned antibodies barcode, we realized multiplexed profiling of single-cell EVs secretion from more than 1000 single cells simultaneously. Applying this platform to profile human oral squamous cell carcinoma (OSCC) cell lines led to deep understanding of previously undifferentiated single cell heterogeneity underlying EVs secretion. Notably, we observed the decrement of certain EV phenotypes (e.g. CD63+EVs) were associated with the invasive feature of both OSCC cell lines and primary OSCC cells. We also realized multiplexed detection of EVs secretion and cytokines secretion simultaneously from the same single cells to investigate multidimensional spectrum of intercellular communications, from which we resolved three functional subgroups with distinct secretion profiles by visualized clustering. In particular, we found EVs secretion and cytokines secretion were generally dominated by different cell subgroups. The technology introduced here enables comprehensive evaluation of EVs secretion heterogeneity at single cell level, which may become an indispensable tool to complement current single cell analysis and EV research.SignificanceExtracellular vesicles (EVs) are cell derived nano-sized particles medicating cell-cell communication and transferring biology information molecules like nucleic acids to regulate human health and disease. Conventional methods for EV surface markers profiling can’t tell the differences in the quantity and phenotypes of EVs secretion between cells. To address this need, we developed a platform for profiling an array of surface markers on EVs from large numbers of single cells, enabling more comprehensive monitoring of cellular communications. Single cell EVs secretion assay led to previously unobserved cell heterogeneity underlying EVs secretion, which might open up new avenues for studying cell communication and cell microenvironment in both basic and clinical research.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2316
Author(s):  
Lucia Catani ◽  
Michele Cavo ◽  
Francesca Palandri

Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in “education” and “crafting” of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucas Albacete-Albacete ◽  
Miguel Sánchez-Álvarez ◽  
Miguel Angel del Pozo

ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.


2019 ◽  
Vol 20 (2) ◽  
pp. 236 ◽  
Author(s):  
Claudia Campanella ◽  
Celeste Caruso Bavisotto ◽  
Mariantonia Logozzi ◽  
Antonella Marino Gammazza ◽  
Davide Mizzoni ◽  
...  

Extracellular vesicles (EVs) are lipid membrane vesicles released by all human cells and are widely recognized to be involved in many cellular processes, both in physiological and pathological conditions. They are mediators of cell-cell communication, at both paracrine and systemic levels, and therefore they are active players in cell differentiation, tissue homeostasis, and organ remodeling. Due to their ability to serve as a cargo for proteins, lipids, and nucleic acids, which often reflects the cellular source, they should be considered the future of the natural nanodelivery of bio-compounds. To date, natural nanovesicles, such as exosomes, have been shown to represent a source of disease biomarkers and have high potential benefits in regenerative medicine. Indeed, they deliver both chemical and bio-molecules in a way that within exosomes drugs are more effective that in their exosome-free form. Thus, to date, we know that exosomes are shuttle disease biomarkers and probably the most effective way to deliver therapeutic molecules within target cells. However, we do not know exactly which exosomes may be used in therapy in avoiding side effects as well. In regenerative medicine, it will be ideal to use autologous exosomes, but it seems not ideal to use plasma-derived exosomes, as they may contain potentially dangerous molecules. Here, we want to present and discuss a contradictory relatively unmet issue that is the lack of a general agreement on the choice for the source of extracellular vesicles for therapeutic use.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Andrew Khayrullin ◽  
Priyanka Krishnan ◽  
Luis Martinez-Nater ◽  
Bharati Mendhe ◽  
Sadanand Fulzele ◽  
...  

Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24–40 yrs.) and older (75–90 yrs.) women and young (6–10 yrs.) and older (25–30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging.


Sign in / Sign up

Export Citation Format

Share Document