scholarly journals Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field

2021 ◽  
Vol 22 (6) ◽  
pp. 2887
Author(s):  
Raffaella Balestrini ◽  
Cecilia Brunetti ◽  
Maria Cammareri ◽  
Sofia Caretto ◽  
Valeria Cavallaro ◽  
...  

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.

2019 ◽  
Author(s):  
Patrick Fier ◽  
Kevin M. Maloney

Herein we describe the development and application of a method for the mild, late-stage conversion of primary sulfonamides to several other other functional groups. These reactions occur via initial reductive deamination of sulfonamides to sulfinates via an NHC-catalyzed reaction of transiently formed <i>N</i>-sulfonylimines. The method described here is tolerant of nearly all common functional groups, as exemplified by the late-stage derivatization of several complex pharmaceutical compounds. Based on the prevalence of sulfonamide-containing drugs and building blocks, we have developed a method to enable sulfonamides to be applied as versatile synthetic handles for synthetic chemsitry.


2019 ◽  
Author(s):  
Patrick Fier ◽  
Kevin M. Maloney

Herein we describe the development and application of a method for the mild, late-stage conversion of primary sulfonamides to several other other functional groups. These reactions occur via initial reductive deamination of sulfonamides to sulfinates via an NHC-catalyzed reaction of transiently formed <i>N</i>-sulfonylimines. The method described here is tolerant of nearly all common functional groups, as exemplified by the late-stage derivatization of several complex pharmaceutical compounds. Based on the prevalence of sulfonamide-containing drugs and building blocks, we have developed a method to enable sulfonamides to be applied as versatile synthetic handles for synthetic chemsitry.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 823
Author(s):  
Jian Tan ◽  
Duan Ni ◽  
Rosilene V. Ribeiro ◽  
Gabriela V. Pinget ◽  
Laurence Macia

Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.


2018 ◽  
Author(s):  
Mathias Wiegmann ◽  
Andreas Maurer ◽  
Anh Pham ◽  
Timothy J. March ◽  
Ayed Al-Abdallat ◽  
...  

AbstractSince the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley germplasm, introgressed into elite barley cultivars, can be utilized to improve grain yield. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.


2020 ◽  
Vol 71 (21) ◽  
pp. 6758-6774 ◽  
Author(s):  
Mohammad Abass Ahanger ◽  
Javaid Akhter Bhat ◽  
Manzer H Siddiqui ◽  
Jörg Rinklebe ◽  
Parvaiz Ahmad

Abstract As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.


Author(s):  
Isabel Manrique-Gil ◽  
Inmaculada Sánchez-Vicente ◽  
Isabel Torres-Quezada ◽  
Oscar Lorenzo

Abstract Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 682-690 ◽  
Author(s):  
Omar M. Yaghi ◽  
Qiaowei Li

AbstractReticular chemistry concerns the linking of molecular building blocks into predetermined structures using strong bonds. We have been working on creating and developing the conceptual and practical basis of this new area of research. As a result, new classes of crystalline porous materials have been designed and synthesized: metal-organic frameworks, zeolitic imidazolate frameworks, and covalent organic frameworks. Crystals of this type have exceptional surface areas (2,000−6,000 m2/g) and take up voluminous amounts of hydrogen (7.5 wt% at 77 K and 3−4 × 106 Pa), methane (50 wt% at 298 K and 2.5 × 106 Pa), and carbon dioxide (140 wt% at 298 K and 3 × 106 Pa). We have driven the basic science all the way to applications without losing sight of our quest for understanding the underlying molecular aspects of this chemistry. The presentation was focused on the design concepts, synthesis, and structure of these materials, with emphasis on their applications to onboard energy storage.


2009 ◽  
Vol 75 (15) ◽  
pp. 5001-5008 ◽  
Author(s):  
Xueyang Feng ◽  
Housna Mouttaki ◽  
Lu Lin ◽  
Rick Huang ◽  
Bing Wu ◽  
...  

ABSTRACT Thermoanaerobacter sp. strain X514 has great potential in biotechnology due to its capacity to ferment a range of C5 and C6 sugars to ethanol and other metabolites under thermophilic conditions. This study investigated the central metabolism of strain X514 via 13C-labeled tracer experiments using either glucose or pyruvate as both carbon and energy sources. X514 grew on minimal medium and thus contains complete biosynthesis pathways for all macromolecule building blocks. Based on genome annotation and isotopic analysis of amino acids, three observations can be obtained about the central metabolic pathways in X514. First, the oxidative pentose phosphate pathway in X514 is not functional, and the tricarboxylic acid cycle is incomplete under fermentative growth conditions. Second, X514 contains (Re)-type citrate synthase activity, although no gene homologous to the recently characterized (Re)-type citrate synthase of Clostridium kluyveri was found. Third, the isoleucine in X514 is derived from acetyl coenzyme A and pyruvate via the citramalate pathway rather than being synthesized from threonine via threonine ammonia-lyase. The functionality of the citramalate synthase gene (cimA [Teth514_1204]) has been confirmed by enzymatic activity assays, while the presence of intracellular citramalate has been detected by mass spectrometry. This study demonstrates the merits of combining 13C-assisted metabolite analysis, enzyme assays, and metabolite detection not only to examine genome sequence annotations but also to discover novel enzyme activities.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 997 ◽  
Author(s):  
Katja F. Hellendahl ◽  
Sarah Kamel ◽  
Albane Wetterwald ◽  
Peter Neubauer ◽  
Anke Wagner

Natural ribonucleoside-5’-monophosphates are building blocks for nucleic acids which are used for a number of purposes, including food additives. Their analogues, additionally, are used in pharmaceutical applications. Fludarabine-5´-monophosphate, for example, is effective in treating hematological malignancies. To date, ribonucleoside-5’-monophosphates are mainly produced by chemical synthesis, but the inherent drawbacks of this approach have led to the development of enzymatic synthesis routes. In this study, we evaluated the potential of human deoxycytidine kinase (HsdCK) as suitable biocatalyst for the synthesis of natural and modified ribonucleoside-5’-monophosphates from their corresponding nucleosides. Human dCK was heterologously expressed in E. coli and immobilized onto Nickel-nitrilotriacetic acid (Ni-NTA) superflow. A screening of the substrate spectrum of soluble and immobilized biocatalyst revealed that HsdCK accepts a wide range of natural and modified nucleosides, except for thymidine and uridine derivatives. Upon optimization of the reaction conditions, HsdCK was used for the synthesis of fludarabine-5´-monophosphate using increasing substrate concentrations. While the soluble biocatalyst revealed highest product formation with the lowest substrate concentration of 0.3 mM, the product yield increased with increasing substrate concentrations in the presence of the immobilized HsdCK. Hence, the application of immobilized HsdCK is advantageous upon using high substrate concentration which is relevant in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document