scholarly journals Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer

2021 ◽  
Vol 22 (9) ◽  
pp. 4419
Author(s):  
Laura Brohée ◽  
Julie Crémer ◽  
Alain Colige ◽  
Christophe Deroanne

The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.

2020 ◽  
Vol 15 (6) ◽  
pp. 482-491 ◽  
Author(s):  
Milena Kostadinova ◽  
Milena Mourdjeva

Mesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.


2021 ◽  
Vol 10 ◽  
Author(s):  
Aukie Hooglugt ◽  
Miesje M. van der Stoel ◽  
Reinier A. Boon ◽  
Stephan Huveneers

Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Hyun Ah Seo ◽  
Sokviseth Moeng ◽  
Seokmin Sim ◽  
Hyo Jeong Kuh ◽  
Soo Young Choi ◽  
...  

The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.


2020 ◽  
Vol 21 (21) ◽  
pp. 8359 ◽  
Author(s):  
Aleksandra Simiczyjew ◽  
Ewelina Dratkiewicz ◽  
Justyna Mazurkiewicz ◽  
Marcin Ziętek ◽  
Rafał Matkowski ◽  
...  

The low efficiency of currently-used anti-cancer therapies poses a serious challenge, especially in the case of malignant melanoma, a cancer characterized by elevated invasiveness and relatively high mortality rate. The role of the tumor microenvironment in the progression of melanoma and its acquisition of resistance to treatment seems to be the main focus of recent studies. One of the factors that, in normal conditions, aids the organism in its fight against the cancer and, following the malignant transformation, adapts to facilitate the development of the tumor is the immune system. A variety of cell types, i.e., T and B lymphocytes, macrophages, and dendritic and natural killer cells, as well as neutrophils, support the growth and invasiveness of melanoma cells, utilizing a plethora of mechanisms, including secretion of pro-inflammatory molecules, induction of inhibitory receptors expression, or depletion of essential nutrients. This review provides a comprehensive summary of the processes regulated by tumor-associated cells that promote the immune escape of melanoma cells. The described mechanisms offer potential new targets for anti-cancer treatment and should be further studied to improve currently-employed therapies.


2020 ◽  
Vol 10 ◽  
Author(s):  
Alessandra Ferraresi ◽  
Carlo Girone ◽  
Andrea Esposito ◽  
Chiara Vidoni ◽  
Letizia Vallino ◽  
...  

Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.


Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


2021 ◽  
pp. 096032712110214
Author(s):  
Yansong Chen ◽  
Ye Tian ◽  
Gongsheng Jin ◽  
Zhen Cui ◽  
Wei Guo ◽  
...  

This study aimed to investigate the anti-cancer effect of lobetyolin on breast cancer cells. Lobetyolin was incubated with MDA-MB-231 and MDA-MB-468 breast cancer cells for 24 h. Glucose uptake and the mRNA expression of GLUT4 ( SLC2A4), HK2 and PKM2 were detected to assess the effect of lobetyolin on glucose metabolism. Glutamine uptake and the mRNA expression of ASCT2 ( SLC1A5), GLS1, GDH and GLUL were measured to assess the effect of lobetyolin on glutamine metabolism. Annexin V/PI double staining and Hoechst 33342 staining were used to investigate the effect of lobetyolin on cell apoptosis. Immunoblot was employed to estimate the effect of lobetyolin on the expression of proliferation-related markers and apoptosis-related markers. SLC1A5 knockdown with specific siRNA was performed to study the role of ASCT2 played in the anti-cancer effect of lobetyolin on MDA-MB-231 and MDA-MB-468 breast cancer cells. C-MYC knockdown with specific siRNA was performed to study the role of c-Myc played in lobetyolin-induced ASCT2 down-regulation. Myr-AKT overexpression was performed to investigate the role of AKT/GSK3β signaling played in lobetyolin-induced down-regulation of c-Myc and ASCT2. The results showed that lobetyolin inhibited the proliferation of both MDA-MB-231 and MDA-MB-468 breast cancer cells. Lobetyolin disrupted glutamine uptake via down-regulating ASCT2. SLC1A5 knockdown attenuated the anti-cancer effect of lobetyolin. C-MYC knockdown attenuated lobetyolin-caused down-regulation of ASCT2 and Myr-AKT overexpression reversed lobetyolin-caused down-regulation of both c-Myc and ASCT2. In conclusion, the present work suggested that lobetyolin exerted anti-cancer effect via ASCT2 down-regulation-induced apoptosis in breast cancer cells.


2021 ◽  
Vol 22 (14) ◽  
pp. 7430
Author(s):  
Hiromi Sato ◽  
Ayaka Shimizu ◽  
Toya Okawa ◽  
Miaki Uzu ◽  
Momoko Goto ◽  
...  

The role of astrocytes in the periphery of metastatic brain tumors is unclear. Since astrocytes regulate central nervous metabolism, we hypothesized that changes in astrocytes induced by contact with cancer cells would appear in the metabolome of both cells and contribute to malignant transformation. Coculture of astrocytes with breast cancer cell supernatants altered glutamate (Glu)-centered arginine–proline metabolism. Similarly, the metabolome of cancer cells was also altered by astrocyte culture supernatants, and the changes were further amplified in astrocytes exposed to Glu. Inhibition of Glu uptake in astrocytes reduces the variability in cancer cells. Principal component analysis of the cancer cells revealed that all these changes were in the first principal component (PC1) axis, where the responsible metabolites were involved in the metabolism of the arginine–proline, pyrimidine, and pentose phosphate pathways. The contribution of these changes to the tumor microenvironment needs to be further pursued.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document