scholarly journals Dietary Interventions Ameliorate Infectious Colitis by Restoring the Microbiome and Promoting Stem Cell Proliferation in Mice

2021 ◽  
Vol 23 (1) ◽  
pp. 339
Author(s):  
Ishfaq Ahmed ◽  
Kafayat Yusuf ◽  
Badal C. Roy ◽  
Jason Stubbs ◽  
Shrikant Anant ◽  
...  

Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring Firmicutes and Bacteroidetes and by increasing mucus production. RNA-seq in young adult mouse colon (YAMC) cells identified higher expression of Lgr4, Lgr6, DCLK1, Muc2, and SIGGIR after Butyrate treatment. Lineage tracing in CR-infected Lgr5-EGFP-IRES-CreERT2/ROSA26-LacZ (Lgr5-R) mice also revealed an expansion of LacZ-labeled Lgr5(+) stem cells in the colons of both Pectin and Tributyrin-treated mice compared to control. Interestingly, gut microbiota was required for Pectin but not Tributyrin-induced Lgr5(+) stem cell expansion. YAMC cells treated with sodium butyrate exhibited increased Lgr5 promoter reporter activity due to direct Butyrate binding with Lgr5 at −4.0 Kcal/mol, leading to thermal stabilization. Upon ChIP-seq, H3K4me3 increased near Lgr5 transcription start site that contained the consensus binding motif for a transcriptional activator of Lgr5 (SPIB). Thus, a multitude of effects on gut microbiome, differential gene expression, and/or expansion of Lgr5(+) stem cells seem to underlie amelioration of colitis following dietary intervention.

2018 ◽  
Vol 115 (4) ◽  
pp. E610-E619 ◽  
Author(s):  
Onur Basak ◽  
Teresa G. Krieger ◽  
Mauro J. Muraro ◽  
Kay Wiebrands ◽  
Daniel E. Stange ◽  
...  

The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.


2016 ◽  
Vol 113 (27) ◽  
pp. 7509-7514 ◽  
Author(s):  
Philip Greulich ◽  
Benjamin D. Simons

To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of “dynamic heterogeneity” may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.


2019 ◽  
Author(s):  
Bradley Pawlikowski ◽  
Nicole Dalla Betta ◽  
Tiffany Antwine ◽  
Bradley B. Olwin

SummarySkeletal muscle maintenance and repair is dependent on the resident adult muscle stem cell (MuSC). During injury, and in diseased muscle, stem cells are engaged to replace or repair damaged muscle, which requires the stem cells to exit quiescence and expand, followed by differentiation to regenerate myofibers and self-renewal to replenish the stem cell population. Following an injury, little is known regarding the timing of MuSC (skeletal muscle stem cell) self-renewal, myoblast expansion or myoblast differentiation. To determine the timing and kinetics of these cell fate decisions, we employed DNA-based lineage tracing to label newly replicated cells and followed cell fates during skeletal muscle regeneration. MuSCs activate and expand as myoblasts rapidly following injury, where the majority differentiate into myonuclei, establishing the centrally located myonuclear pool. Re-establishing the majority MuSC pool by self-renewal occurs after 5 days post-muscle injury, accompanied by low levels of myonuclear accretion that generate only peripheral myonuclei. In aged mice, possessing ∼1/2 the number of MuSCs present in young adult mice, the timing of post injury MuSC self-renewal is delayed, and although MuSCs expansion as myoblasts in aged muscle is impaired, the number of MuSC unexpectedly recovers to young adult levels during regeneration. Following an induced muscle injury, we found that myonuclei are generated within the first four days post injury derived from myoblasts expanding from activated MuSCs. Only later during regeneration, from 5 d to 14 d post injury, is the MuSC pool replenished by self-renewal, accompanied by generation of peripheral myonuclei.


2019 ◽  
Author(s):  
Xue Wang ◽  
Haibo Xu ◽  
Chaping Cheng ◽  
Zhongzhong Ji ◽  
Huifang Zhao ◽  
...  

AbstractThe basal cell compartment in many epithelial tissues such as the prostate, bladder, and mammary gland are generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb is exclusively expressed in a prostate basal cell subpopulation based on both immunocytochemical and cell lineage tracing analysis. The Zeb1+prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures with all three epithelial cell types at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single cell transcriptomic analysis of over 9000 mouse prostate basal cells, we find that Zeb1+basal cell subset shares gene expression signatures with both epithelial and mesenchymal cells and stands out uniquely among all the basal cell clusters. Moreover, Zeb1+epithelial cells can be detected in mouse and clinical samples of prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.


2021 ◽  
Author(s):  
Kazuteru Hasegawa ◽  
Yang Zhao ◽  
Alina Garbuzov ◽  
M. Ryan Corces ◽  
Lu Chen ◽  
...  

SummaryTelomerase is intimately associated with stem cells and upregulated in cancer, where it serves essential roles through its catalytic action in elongating telomeres, nucleoprotein caps that protect chromosome ends1. Overexpression of the telomerase reverse transcriptase (TERT) enhances cell proliferation through telomere-independent means, yet definitive evidence for such a direct role in stem cell function has yet to be revealed through loss-of-function studies. Here, we show that conditional deletion of TERT in spermatogonial stem cells (SSCs) markedly impairs competitive clone formation. Using lineage-tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that selective TERT-inactivation in SSCs causes accelerated stem cell differentiation thereby disrupting clone formation. This requirement for TERT in clone formation is bypassed by expression of a catalytically inactive TERT transgene and occurs independently of the canonical telomerase complex. TERT inactivation induces a genome-wide reduction in open chromatin evident in purified SSCs, but not in committed progenitor cells. Loss of TERT causes reduced activity of the MYC oncogene and transgenic expression of MYC in TERT-deleted SSCs efficiently rescues clone formation. These data reveal a required catalytic activity-independent role for TERT in preventing stem cell differentiation, forge a genetic link between TERT and MYC and suggest new means by which TERT may promote tumorigenesis.


Author(s):  
Francisca Soares-da-Silva ◽  
Odile Burlen-Defranoux ◽  
Ramy Elsaid ◽  
Lorea Iturri ◽  
Laina Freyer ◽  
...  

AbstractThe first hematopoietic cells are produced in the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. Here we document that hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac-derived erythromyeloid progenitors, that also contribute to tissue resident macrophages, shows a progeny of highly proliferative erythroblasts, that after intra embryonic injection, rapidly differentiate. These progenitors, similar to hematopoietic stem cells, are c-Myb dependent and are developmentally restricted as they are not found in the bone marrow. We show that erythrocyte progenitors of yolk sac origin require lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. Consequently, fetal liver hematopoietic stem cells fail to generate megakaryocyte and erythrocyte progenitors. We propose that large numbers of yolk sac-derived erythrocyte progenitors have a selective advantage and efficiently outcompete hematopoietic stem cell progeny in an environment with limited availability of erythropoietin.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuki Fujimichi ◽  
Kensuke Otsuka ◽  
Masanori Tomita ◽  
Toshiyasu Iwasaki

AbstractStem cell competition could shed light on the tissue-based quality control mechanism that prevents carcinogenesis. To quantitatively evaluate stem cell competition in vitro, we developed a two-color intestinal organoid forming system. First, we improved a protocol of culturing organoids from intestinal leucine-rich-repeat containing G-protein-coupled receptor 5 (Lgr5)- enhanced green fluorescent protein (EGFP)high stem cells directly sorted on Matrigel without embedding. The organoid-forming potential (OFP) was 25% of Lgr5-EGFPhigh cells sorted at one cell per well. Using this culture protocol with lineage tracing, we established a two-color organoid culture system by mixing stem cells expressing different fluorescent colors. To analyze stem cell competition, two-color organoids were formed by mixing X-ray-irradiated and non-irradiated intestinal stem cells. In the two-color organoids, irradiated stem cells exhibited a growth disadvantage, although the OFP of irradiated cells alone did not decrease significantly from that of non-irradiated cells. These results suggest that stem cell competition can be evaluated quantitively in vitro using our new system.


2019 ◽  
Vol 116 (14) ◽  
pp. 6848-6857 ◽  
Author(s):  
Shiying Jin

The endometrial epithelium of the uterus regenerates periodically. The cellular source of newly regenerated endometrial epithelia during a mouse estrous cycle or a human menstrual cycle is presently unknown. Here, I have used single-cell lineage tracing in the whole mouse uterus to demonstrate that epithelial stem cells exist in the mouse uterus. These uterine epithelial stem cells provide a resident cellular supply that fuels endometrial epithelial regeneration. They are able to survive cyclical uterine tissue loss and persistently generate all endometrial epithelial lineages, including the functionally distinct luminal and glandular epithelia, to maintain uterine cycling. The uterine epithelial stem cell population also supports the regeneration of uterine endometrial epithelium post parturition. The 5-ethynyl-2′-deoxyuridine pulse-chase experiments further reveal that this stem cell population may reside in the intersection zone between luminal and glandular epithelial compartments. This tissue distribution allows these bipotent uterine epithelial stem cells to bidirectionally differentiate to maintain homeostasis and regeneration of mouse endometrial epithelium under physiological conditions. Thus, uterine function over the reproductive lifespan of a mouse relies on stem cell-maintained rhythmic endometrial regeneration.


2020 ◽  
pp. 153537022097995
Author(s):  
Jisun HJ Lee ◽  
Jiangjiang Zhu

As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.


2016 ◽  
Vol 113 (11) ◽  
pp. E1498-E1505 ◽  
Author(s):  
Xinhong Lim ◽  
Si Hui Tan ◽  
Ka Lou Yu ◽  
Sophia Beng Hui Lim ◽  
Roeland Nusse

How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.


Sign in / Sign up

Export Citation Format

Share Document