scholarly journals Overexpression of the Aldehyde Dehydrogenase Gene ZmALDH Confers Aluminum Tolerance in Arabidopsis thaliana

2022 ◽  
Vol 23 (1) ◽  
pp. 477
Author(s):  
Han-Mei Du ◽  
Chan Liu ◽  
Xin-Wu Jin ◽  
Cheng-Feng Du ◽  
Yan Yu ◽  
...  

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.

2020 ◽  
Vol 71 (20) ◽  
pp. 6512-6523
Author(s):  
Liyuan Wu ◽  
Yiyi Guo ◽  
Shengguan Cai ◽  
Liuhui Kuang ◽  
Qiufang Shen ◽  
...  

Abstract Aluminum (Al) toxicity is a major abiotic stress that restricts crop production in acid soils. Plants have evolved internal and external mechanisms of tolerance, and among them it is well known that AtSTOP1 and OsART1 are key transcription factors involved in tolerance through regulation of multiple downstream genes. Here, we identified the closest homolog of these two proteins in barley, namely HvATF1, Al-tolerance Transcription Factor 1, and determined its potential function in Al stress. HvATF1 is expressed in the nucleus, and functions in transcriptional activation. The transcription of HvATF1 was found to be constitutive in different tissues, and was little affected by Al stress. Knockdown of HvATF1 by RNAi resulted in increased Al sensitivity. Transcriptomics analysis identified 64 differently expressed genes in the RNAi lines compared to the wild-type, and these were considered as candidate downstream genes regulated by HvATF1. This study provides insights into the different molecular mechanisms of Al tolerance in barley and other plants.


2020 ◽  
Vol 116 (2) ◽  
pp. 273
Author(s):  
Ahmed M. HASSANEIN ◽  
Ahmed H. MOHAMED ◽  
Heba Ahmed ABD ALLAH ◽  
Hoida ZAKI

<p>Two cultivars of faba bean (<em>Vicia faba</em> ‘Giza 843’ and ‘Nobaria 3’) that differ in aluminum (Al) tolerance were used to study cytogenetic and genomic alterations under the influence of Al Cl<sub>3</sub> (5, 15, and 25 mmol AlCl<sub>3</sub>) for different periods (6, 12 and 24 h). Under Al treatments, mitotic index in both cultivars decreased and total chromosomal abnormalities increased. The frequencies of micronuclei and chromosomal abnormalities (C-anaphase, metaphase-star chromosomes, breaks, sticky and disturbed chromosomes during metaphase or anaphase) in ‘Giza 843’ were lower than in ‘Nabaria 3’. Increase of the registered cytogenetic events under the influence of Al stress led to increase the detected polymorphism using RAPD and ISSR markers. Application of RAPD primers gave the same value of polymorphism in both faba bean cultivars under Al stress. Polymorphism average of nine ISSR primers of ’Giza 843’ (65.36 %) was lower than that of ‘Nobaria 3’ (71.59 %). Molecular markers, cytogenetic characteristics and seedling growth data indicate that Al tolerance of ‘Giza 843’ was higher than of ‘Nobaria 3’. This work shows that cytogenetic and ISSR techniques could be used efficiently to distinguish between the ability of two faba bean cultivars to tolerate toxic effects of Al.</p>


2020 ◽  
Author(s):  
Dharmendra Singh ◽  
Chandan Kumar Singh ◽  
Jyoti Taunk ◽  
Ram Sewak Singh Tomar ◽  
Madan Pal ◽  
...  

Abstract Background: Aluminium (Al) stress hinders crop productivity in acidic soils. Lentil contains rich source of protein and micronutrients and cultivated in different parts of world. To enhance knowledge about Al toxicity tolerance, present study emphasizes on mechanistic analysis of genes associated with Al stress through de novo transcriptomic analysis of tolerant (L-4602), wild (ILWL-15) and sensitive (BM-4) genotypes. Result: Illumina HiSeq 2500 platform evaluated contigs ranging from 15,305 to 18,861 for all the samples with N 50 values of 1795 bp. Four annotation softwares revealed differential regulation of several genes where 30,158 genes were specifically up-regulated for combinations under Al stress conditions alone. Top up-regulated Differentially Expressed Genes (DEGs) in tolerant cultivar when compared to the sensitive one were found to be involved in protein transport as well as degradation, defences, cell growth and development. Wild v/s cultivar comparison revealed upregulation of wild DEGs that are involved in regulation of transcription in differentiating cells, pre-mRNA splicing, catalysis and protein ubiquitination. Based on assembled Unigenes, 89,722 high-quality SNPs and 39,874 SSRs were detected. Twelve selected genes were validated using qRT-PCR. KEGG pathway analysis extracted 8,757 GO annotation terms within molecular, cellular and biological processes. Pathway analysis indicated that organic acid synthesis and their transportation along with detoxification of ROS, an alternate pathway involving metacaspase-1,4,9 for programmed cell death were also significantly induced due to Al stress. Conclusion: Present study unveils the characterization of differential transcripts generated under Al stress indicating Al tolerance as a multiplex phenomenon which will directly widen crop improvement programmes for Al toxicity utilizing molecular approaches.


2020 ◽  
Vol 21 (12) ◽  
pp. 4316
Author(s):  
Lijuan Zhao ◽  
Jingjing Cui ◽  
Yuanyuan Cai ◽  
Songnan Yang ◽  
Juge Liu ◽  
...  

Aluminum (Al) toxicity is a major factor limiting crop productivity on acid soils. Soybean (Glycine max) is an important oil crop and there is great variation in Al tolerance in soybean germplasms. However, only a few Al-tolerance genes have been reported in soybean. Therefore, the purpose of this study was to identify candidate Al tolerance genes by comparative transcriptome analysis of two contrasting soybean varieties in response to Al stress. Two soybean varieties, M90-24 (M) and Pella (P), which showed significant difference in Al tolerance, were used for RNA-seq analysis. We identified a total of 354 Al-tolerance related genes, which showed up-regulated expression by Al in the Al-tolerant soybean variety M and higher transcript levels in M than P under Al stress. These genes were enriched in the Gene Ontology (GO) terms of cellular glucan metabolic process and regulation of transcription. Five out of 11 genes in the enriched GO term of cellular glucan metabolic process encode cellulose synthases, and one cellulose synthase gene (Glyma.02G205800) was identified as the key hub gene by co-expression network analysis. Furthermore, treatment of soybean roots with a cellulose biosynthesis inhibitor decreased the Al tolerance, indicating an important role of cellulose production in soybean tolerance to Al toxicity. This study provides a list of candidate genes for further investigation on Al tolerance mechanisms in soybean.


2020 ◽  
Vol 21 (8) ◽  
pp. 2754
Author(s):  
Yuan-Tai Liu ◽  
Qi-Han Shi ◽  
He-Jie Cao ◽  
Qi-Bin Ma ◽  
Hai Nian ◽  
...  

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


2002 ◽  
Vol 37 (8) ◽  
pp. 1099-1103 ◽  
Author(s):  
Euclydes Minella ◽  
Mark Earl Sorrells

Aluminum (Al) toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.


2011 ◽  
Vol 149 (6) ◽  
pp. 737-751 ◽  
Author(s):  
Q. CHEN ◽  
X. D. ZHANG ◽  
S. S. WANG ◽  
Q. F. WANG ◽  
G. Q. WANG ◽  
...  

SUMMARYMedicago sativa is an excellent pasture legume, but it is very sensitive to aluminium (Al) toxicity. To better understand the mechanism of M. sativa sensitivity to Al, a forward suppression subtractive hybridization (SSH) cDNA library for an Al-sensitive cultivar, M. sativa L. cv. Yumu No. 1 (YM1), under 5 μm Al stress over a 24 h period was constructed to analyse changes in its gene expression in response to Al stress. Sequence analysis for the SSH cDNA library generated 291 high-quantity expression sequence tags (ESTs). Of these, 229 were known as functional ESTs, 137 of which have already been reported as Al response genes, whereas the other 92 were potentially novel Al-associated genes. The up-regulation of known Al resistance-associated genes encoding the transcription factor sensitive to proton rhizotoxicity 1 (STOP1) and malate transporter MsALMT1 (Al-activated malate transporter) as well as genes for antioxidant enzymes was observed. Reverse transcription polymerase chain reaction analysis validated the reliability of the SSH data and confirmed the up-regulated expression of STOP1 and MsALMT1 under 5 μm Al stress. The analysis of physiological changes indicated that hydrogen peroxide (H2O2) and malondialdehyde levels were elevated rapidly under 5 μm Al stress, suggesting that severe oxidative stress occurred in the YM1 roots. The up-regulation of antioxidant-related genes might be an important protective mechanism for YM1 in response to the oxidative stress induced by 5 μm Al toxicity. Al-induced malate exudation was increased drastically during the early period after Al treatment, which might have been due to the up-regulation and function of MsALMT and STOP1. However, malate exudation from the YM1 roots declined quickly during the subsequent period, and a gradual decrease in malate content was simultaneously observed in the YM1 roots. This result is in agreement with the observation that organic acid metabolism-associated enzymes such as phosphoenolpyruvate carboxylase, citrate synthase and malate dehydrogenase were not present in the SSH library. This might be a major reason for the YM1 sensitivity to Al.


2018 ◽  
Vol 64 (8) ◽  
pp. 511-526 ◽  
Author(s):  
María D. Artigas Ramírez ◽  
Jéssica D. Silva ◽  
Naoko Ohkama-Ohtsu ◽  
Tadashi Yokoyama

Aluminum (Al) toxicity is a major problem affecting soil fertility, microbial diversity, and nutrient uptake of plants. Rhizobia response and legume interaction under Al conditions are still unknown; it is important to understand how to develop and improve legume cultivation under Al stress. In this study, rhizobia response was recorded under different Al concentrations. Al effect on rhizobial cells was characterized by combination with different two pH conditions. Symbiosis process was compared between α- and β-rhizobia inoculated onto soybean varieties. Rhizobial cell numbers was decreased as Al concentration increased. However, induced Al tolerance considerably depended on rhizobia types and their origins. Accordingly, organic acid results were in correlation with growth rate and cell density which suggested that citric acid might be a positive selective force for Al tolerance and plant interaction on rhizobia. Al toxicity delayed and interrupted the plant–rhizobia interaction and the effect was more pronounced under acidic conditions. Burkholderia fungorum VTr35 significantly improved plant growth under acid–Al stress in combination with all soybean varieties. Moreover, plant genotype was an important factor to establish an effective nodulation and nitrogen fixation under Al stress. Additionally, tolerant rhizobia could be applied as an inoculant on stressful agroecosystems. Furthermore, metabolic pathways have still been unknown under Al stress.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 670
Author(s):  
Juge Liu ◽  
Xiangting Wang ◽  
Ning Wang ◽  
Yang Li ◽  
Ting Jin ◽  
...  

Aluminum (Al) toxicity is an important barrier to soybean (Glycine max (L.) Merr.) production in acid soils. However, little is known about the genes underlying Al tolerance in soybean. We aim to find the key candidate genes and investigate their roles in soybean tolerance to Al toxicity in this study. Comparative transcriptome analyses of the Al-tolerant (KF) and Al-sensitive (GF) soybean varieties under control and Al stress at 6, 12, and 24 h were investigated. A total of 1411 genes showed specific up-regulation in KF or more up-regulation in KF than in GF by Al stress, which were significantly enriched in the GO terms of peroxidase (POD) activity, transporter activity (including the known Al tolerance-related ABC transporter, ALMT, and MATE), and four families of transcription factors (AP2, C3H4, MYB, WRKY). The expression levels of seven POD genes were up-regulated by Al stress for at least one time point in KF. The H2O2 pretreatment significantly improved Al tolerance of KF, which is likely due to increased POD activity induced by H2O2. Our results suggest that PODs play important roles in soybean tolerance to Al toxicity. We also propose a list of candidate genes for Al tolerance in KF, which would provide valuable insights into the Al tolerance mechanisms in soybean.


Sign in / Sign up

Export Citation Format

Share Document