scholarly journals Neuroinflammation: A Potential Risk for Dementia

2022 ◽  
Vol 23 (2) ◽  
pp. 616
Author(s):  
Md Afroz Ahmad ◽  
Ozaifa Kareem ◽  
Mohammad Khushtar ◽  
Md Akbar ◽  
Md Rafiul Haque ◽  
...  

Dementia is a neurodegenerative condition that is considered a major factor contributing to cognitive decline that reduces independent function. Pathophysiological pathways are not well defined for neurodegenerative diseases such as dementia; however, published evidence has shown the role of numerous inflammatory processes in the brain contributing toward their pathology. Microglia of the central nervous system (CNS) are the principal components of the brain’s immune defence system and can detect harmful or external pathogens. When stimulated, the cells trigger neuroinflammatory responses by releasing proinflammatory chemokines, cytokines, reactive oxygen species, and nitrogen species in order to preserve the cell’s microenvironment. These proinflammatory markers include cytokines such as IL-1, IL-6, and TNFα chemokines such as CCR3 and CCL2 and CCR5. Microglial cells may produce a prolonged inflammatory response that, in some circumstances, is indicated in the promotion of neurodegenerative diseases. The present review is focused on the involvement of microglial cell activation throughout neurodegenerative conditions and the link between neuroinflammatory processes and dementia.

2021 ◽  
Vol 12 ◽  
Author(s):  
Marina Saade ◽  
Giovanna Araujo de Souza ◽  
Cristoforo Scavone ◽  
Paula Fernanda Kinoshita

Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 137 ◽  
Author(s):  
Antonia Cianciulli ◽  
Chiara Porro ◽  
Rosa Calvello ◽  
Teresa Trotta ◽  
Dario Domenico Lofrumento ◽  
...  

Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.


2020 ◽  
Vol 18 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Ewa Trojan ◽  
Natalia Bryniarska ◽  
Monika Leśkiewicz ◽  
Magdalena Regulska ◽  
Katarzyna Chamera ◽  
...  

: Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. : This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.


Author(s):  
Katarzyna Chamera ◽  
Magdalena Szuster-Głuszczak ◽  
Agnieszka Basta-Kaim

AbstractSchizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Babatunde Oluwafemi Adetuyi ◽  
◽  
Pere-Ebi Yabrade Toloyai ◽  
Evelyn Tarela Ojugbeli ◽  
Oyetola Tolulope Oyebanjo ◽  
...  

The pathophysiological processes involved in neurodegenerative diseases have not been clearly defined. Nevertheless, a significant aspect of the proof focuses directly on the function of several mechanisms of inflammation. The immune system is represented in the central nervous system by the microglial cell capable of detecting harmful or foreign pathogens, and thus initiates self-activation and neuro-inflammatory processes via phagocytosis and cytokines release, to maintain the cellular microenvironment. Then, microglial cells can spawn an emphasis on persistent inflammation that sometimes precedes or promote the neurodegenerative processes. Hence, the neuro-inflammatory micro-environment turns toxic and damaging to the neuronal cell, leading to degeneration and release of several factors which trigger an inflammatory reaction of the microglia, activating the neurodegenerative cycle. The biomechanical properties of the brain, neuronal regeneration, and plasticity can be modified by reactive gliosis. Defining the inception and development of reactive microgliosis and astrogliosis is vital for better clinical treatments design.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Bożena Adamczyk ◽  
Monika Adamczyk-Sowa

Multiple sclerosis (MS) is a multifactorial disease of the central nervous system (CNS) characterized by an inflammatory process and demyelination. The etiology of the disease is still not fully understood. Therefore, finding new etiological factors is of such crucial importance. It is suspected that the development of MS may be affected by oxidative stress (OS). In the acute phase OS initiates inflammatory processes and in the chronic phase it sustains neurodegeneration. Redox processes in MS are associated with mitochondrial dysfunction, dysregulation of axonal bioenergetics, iron accumulation in the brain, impaired oxidant/antioxidant balance, and OS memory. The present paper is a review of the current literature about the role of OS in MS and it focuses on all major aspects. The article explains the mechanisms of OS, reports unique biomarkers with regard to their clinical significance, and presents a poorly understood relationship between OS and neurodegeneration. It also provides novel methods of treatment, including the use of antioxidants and the role of antioxidants in neuroprotection. Furthermore, adding new drugs in the treatment of relapse may be useful. The article considers the significance of OS in the current treatment of MS patients.


2020 ◽  
Vol 21 (23) ◽  
pp. 9105
Author(s):  
Jean-Philippe Dales ◽  
Sophie Desplat-Jégo

There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Valerio Chiurchiù ◽  
Antonio Orlacchio ◽  
Mauro Maccarrone

The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document