scholarly journals A Hot Topic: Cancer Immunotherapy and Natural Killer Cells

2022 ◽  
Vol 23 (2) ◽  
pp. 797
Author(s):  
Tatiana Michel ◽  
Markus Ollert ◽  
Jacques Zimmer

Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3139 ◽  
Author(s):  
Mireia Bachiller ◽  
Anthony M. Battram ◽  
Lorena Perez-Amill ◽  
Beatriz Martín-Antonio

Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.


2021 ◽  
Vol 8 ◽  
Author(s):  
William C. Kisseberth ◽  
Dean A. Lee

Osteosarcoma is the most common primary bone tumor in both humans and dogs. It is a highly metastatic cancer and therapy has not improved significantly since the inclusion of adjuvant chemotherapy into disease treatment strategies. Osteosarcoma is an immunogenic tumor, and thus development of immunotherapies for its treatment, especially treatment of microscopic pulmonary metastases might improve outcomes. NK cells are lymphocytes of the innate immune system and can recognize a variety of stressed cells, including cancer cells, in the absence of major histocompatibility complex (MHC)-restricted receptor ligand interactions. NK cells have a role in controlling tumor progression and metastasis and are important mediators of different therapeutic interventions. The core hypothesis of adoptive natural killer (NK) cell therapy is there exists a natural defect in innate immunity (a combination of cancer-induced reduction in NK cell numbers and immunosuppressive mechanisms resulting in suppressed function) that can be restored by adoptive transfer of NK cells. Here, we review the rationale for adoptive NK cell immunotherapy, NK cell biology, TGFβ and the immunosuppressive microenvironment in osteosarcoma, manufacturing of ex vivo expanded NK cells for the dog and provide perspective on the present and future clinical applications of adoptive NK cell immunotherapy in spontaneous osteosarcoma and other cancers in the dog.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4541-4541
Author(s):  
Dan S Kaufman ◽  
Ryan Bjordahl ◽  
Huang Zhu ◽  
Robert Blum ◽  
Andres Bahena ◽  
...  

Abstract T lymphocytes that express an anti-CD19 chimeric antigen receptor (CAR) to redirect target specificity exhibit remarkable remissions in B cell malignancies. However, these cells are typically produced in a patient-specific manner that is relatively inefficient and expensive. Additionally, CAR-T cell treatment can lead to severe adverse events (SAEs) such as cytokine release syndrome (CRS) and neurotoxicity, as well as graft versus host disease (GvHD) when given in allogeneic setting. To circumvent these safety issues while maintaining multi-faceted anti-tumor activity, we developed an off-the-shelf natural killer (NK) cell consisting of a novel CAR combined with other effector mechanisms to enhance targeted cytotoxicity. NK cells are potent anti-tumor effector cells that play an important role in innate and adaptive immunity. Multiple clinical studies have demonstrated that adoptive transfer of allogeneic NK cells can induce durable remissions in patients with cancers that have relapsed or are refractory to standard therapies without detection of SAEs such as CRS. However, NK cells are challenging to genetically engineer, and are dependent on cytokine support for persistence and exhibit donor-to-donor variability factors that make it difficult to create a consistent clinical product from NK cells. Here we report the use of human induced pluripotent stem cells (iPSCs) to produce a renewable source of precisely engineered NK cells. This iPSC platform was utilized to evaluate a combination of CARs comprised of distinct NK-cell specific signaling and transmembrane domains with an autonomous protein to create a persistent and targeted NK cell immunotherapy. The selected NK cell optimized CAR (NK-CAR) backbone contains an NKG2D transmembrane domain, a 2B4 co-stimulatory domain, and a CD3ζ signaling domain to mediate a potent NK cell activating signal. To provide directed anti-tumor activity, anti-CD19 scFv was added to the NK-CAR backbone, engineered at the iPSC stage and subsequently differentiated on-demand to produce a uniform population of CAR-expressing NK cells. In addition, an IL-15RF fusion transgene was introduced to provide self-stimulating signals to support NK cell function and persistence. The IL-15RF construct was created by fusing IL-15Rα to IL-15 at the C-terminus through a flexible linker. As a third modality, a metalloprotease ADAM17-resistant version of the high-affinity CD16a (hnCD16) 158V variant was introduced at the iPSC stage to augment antibody-dependent cellular-cytotoxicity (ADCC) when used in combination with monoclonal antibodies. The selected iPSC clone exhibits stable expression of all three modalities and represents a renewable source of starting material for the reproducible generation of NK cells consisting of NK-CAR, IL-15RF and hnCD16 with product purity that is greater than 95% CD45+CD56+ with a product expansion greater than one million-fold over the course of the manufacturing process. In preclinical studies, these multi-functional engineered NK cells demonstrated enhanced directed cytotoxicity against CD19+ tumor targets when compared to non-engineered NK cells or iPSC-derived NK cells engineered with other CAR constructs. Additionally, the multi-functional engineered iPSC-CAR-NK cells significantly reduced tumor burden in a xenograft model of B acute lymphoblastic leukemia (p<0.05 at day 28). NK cells with IL-15RF inclusion demonstrated improved proliferation in the absence of cytokine support, as well as improved potency when immediately thawed and tested for efficacy. NK-CAR + IL-15RF eliminated 94% and 86% of target cells in the presence and absence of IL-2, respectively, while NK-CAR efficacy was reduced from 98% target elimination in the presence of IL-2 to 56% in the absence of IL-2. In conclusion, these studies demonstrate iPSCs serve as an optimal platform to provide a renewable multi-engineered NK cell product suitable for an "off-the-shelf" approach and serve as preclinical proof of concept for program FT519, a standardized CAR-targeted NK cell immunotherapy against B cell malignancies. Disclosures Kaufman: Fate Therapeutics: Consultancy, Research Funding. Bjordahl:Fate Therapeutics Inc.: Employment. Mahmood:Fate Therapeutics Inc.: Employment. Bonello:Fate Therapeutics Inc.: Employment. Lee:Fate Therapeutics Inc.: Employment. Cichocki:Fate Therapeutics Inc.: Consultancy, Research Funding. Valamehr:Fate Therapeutics Inc.: Employment.


Immunotherapy ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1231-1251 ◽  
Author(s):  
Faezeh Ghaemdoust ◽  
Mahsa Keshavarz-Fathi ◽  
Nima Rezaei

Natural killer (NK) cells are among the significant components of innate immune system and they have come to the first line of defense against tumor cells developing inside the body. CD56lo/CD16+NK cells are highly cytotoxic and CD56hi NK cells can produce cytokines and perform a regulatory function. Specific features of NK cells have made them a unique choice for cancer immunotherapy. Simple interventions like cytokine-injection to boost the internal NK cells were the first trials to target these cells. Nowadays, many other types of intervention are under investigation, such as adoptive NK cell immunotherapy. In this paper, we will discuss the biology and function of NK cells in cancer immunosurveillance and therapeutic approaches against cancer via using NK cells.


2019 ◽  
Vol 21 (10) ◽  
Author(s):  
Miriam Santiago Kimpo ◽  
Bernice Oh ◽  
Shawn Lee

Abstract Purpose of Review We aim to review the most recent findings in the use of NK cells in childhood cancers. Recent Findings Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing’s sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. Summary NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.


2019 ◽  
Author(s):  
Christoph Mark ◽  
Tina Czerwinski ◽  
Susanne Roessner ◽  
Astrid Mainka ◽  
Franziska Hörsch ◽  
...  

AbstractNatural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation for clinical use, the cells are cryopreserved to bridge the necessary evaluation time. While a degranulation assay confirms the ability of cryopreserved NK cells to kill target cells, we find a significant decrease of cytotoxicity after cryopreservation in a chromium release assay. We complement these standard assays with measurements of NK cell motility and cytotoxicity in 3-dimensional (3-D) collagen gels that serve as a substitute for connective tissue. We find a 5.6 fold decrease of cytotoxicity after cryopreservation and establish that this is mainly caused by a 6-fold decrease in the fraction of motile NK cells. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.SynopsisCryopreservation of natural killer (NK) cells dramatically impairs their motility and cytotoxicity in tissue. This finding may explain the persistent failure of clinical trials in which NK cell therapy is used for treating solid tumors.


Author(s):  
Leoni Rolfes ◽  
Tobias Ruck ◽  
Christina David ◽  
Stine Mencl ◽  
Stefanie Bock ◽  
...  

AbstractRag1−/− mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1−/− mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1nullIL2rgnull (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1−/− and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1−/− NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1−/− were comparable in number and function to those in WT mice. Rag1−/− mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1−/− controls. Our results indicate that NK cells from Rag1−/− mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 866
Author(s):  
Baca Chan ◽  
Maja Arapović ◽  
Laura Masters ◽  
Francois Rwandamuiye ◽  
Stipan Jonjić ◽  
...  

As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.


2021 ◽  
Vol 9 (4) ◽  
pp. e002193
Author(s):  
Sigrid P Dubois ◽  
Milos D Miljkovic ◽  
Thomas A Fleisher ◽  
Stefania Pittaluga ◽  
Jennifer Hsu-Albert ◽  
...  

BackgroundFull application of cytokines as oncoimmunotherapeutics requires identification of optimal regimens. Our initial effort with intravenous bolus recombinant human interleukin-15 (rhIL-15) was limited by postinfusional reactions. Subcutaneous injection and continuous intravenous infusion for 10 days (CIV-10) provided rhIL-15 with less toxicity with CIV-10 giving the best increases in CD8+ lymphocytes and natural killer (NK) cells. To ease rhIL-15 administration, we shortened time of infusion. Treatment with rhIL-15 at a dose of 3–5 µg/kg as a 5-day continuous intravenous infusion (CIV-5) had no dose-limiting toxicities while effector cell stimulation was comparable to the CIV-10 regimen.MethodsEleven patients with metastatic cancers were treated with rhIL-15 CIV-5, 3 µg (n=4), 4 µg (n=3), and 5 µg/kg/day (n=4) in a phase I dose-escalation study (April 6, 2012).ResultsImpressive expansions of NK cells were seen at all dose levels (mean 34-fold), including CD56bright NK cells (mean 144-fold for 4 µg/kg), as well as an increase in CD8+ T cells (mean 3.38-fold). At 5 µg/kg/day, there were no dose-limiting toxicities but pulmonary capillary leak and slower patient recovery. This led to our choice of the 4 µg/kg as CIV-5 dose for further testing. Cytolytic capacity of CD56bright and CD56dim NK cells was increased by interleukin-15 assayed by antibody-dependent cellular cytotoxicity (ADCC), natural cytotoxicity and natural killer group 2D-mediated cytotoxicity. The best response was stable disease.ConclusionsIL-15 administered as CIV-5 substantially expanded NK cells with increased cytotoxic functions. Tumor-targeting monoclonal antibodies dependent on ADCC as their mechanism of action including alemtuzumab, obinutuzumab, avelumab, and mogamulizumab could benefit from those NK cell expansions and provide a promising therapeutic strategy.Trial registration numbersNCT01572493, NCT03759184, NCT03905135, NCT04185220 and NCT02689453.


Sign in / Sign up

Export Citation Format

Share Document