scholarly journals Natural Killer Cells in Immunotherapy: Are We Nearly There?

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3139 ◽  
Author(s):  
Mireia Bachiller ◽  
Anthony M. Battram ◽  
Lorena Perez-Amill ◽  
Beatriz Martín-Antonio

Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.

2016 ◽  
Vol 90 (14) ◽  
pp. 6464-6474 ◽  
Author(s):  
Laura Notario ◽  
Elisenda Alari-Pahissa ◽  
Antonio de Molina ◽  
Pilar Lauzurica

ABSTRACTDuring the host response to viral infection, the transmembrane CD69 protein is highly upregulated in all immune cells. We have studied the role of CD69 in the murine immune response to vaccinia virus (VACV) infection, and we report that the absence of CD69 enhances protection against VACV at both short and long times postinfection in immunocompetent and immunodeficient mice. Natural killer (NK) cells were implicated in the increased infection control, since the differences were greatly diminished when NK cells were depleted. This role of NK cells was not based on an altered NK cell reactivity, since CD69 did not affect the NK cell activation threshold in response to major histocompatibility complex class I NK cell targets or protein kinase C activation. Instead, NK cell numbers were increased in the spleen and peritoneum of CD69-deficient infected mice. That was not just secondary to better infection control in CD69-deficient mice, since NK cell numbers in the spleens and the blood of uninfected CD69−/−mice were already augmented. CD69-deficient NK cells from infected mice did not have an altered proliferation capacity. However, a lower spontaneous cell death rate was observed for CD69−/−lymphocytes. Thus, our results suggest that CD69 limits the innate immune response to VACV infection at least in part through cell homeostatic survival.IMPORTANCEWe show that increased natural killer (NK) cell numbers augment the host response and survival after infection with vaccinia virus. This phenotype is found in the absence of CD69 in immunocompetent and immunodeficient hosts. As part of the innate immune system, NK lymphocytes are activated and participate in the defense against infection. Several studies have focused on the contribution of NK cells to protection against infection with vaccinia virus. In this study, it was demonstrated that the augmented early NK cell response in the absence of CD69 is responsible for the increased protection seen during infection with vaccinia virus even at late times of infection. This work indicates that the CD69 molecule may be a target of therapy to augment the response to poxvirus infection.


Immunotherapy ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1231-1251 ◽  
Author(s):  
Faezeh Ghaemdoust ◽  
Mahsa Keshavarz-Fathi ◽  
Nima Rezaei

Natural killer (NK) cells are among the significant components of innate immune system and they have come to the first line of defense against tumor cells developing inside the body. CD56lo/CD16+NK cells are highly cytotoxic and CD56hi NK cells can produce cytokines and perform a regulatory function. Specific features of NK cells have made them a unique choice for cancer immunotherapy. Simple interventions like cytokine-injection to boost the internal NK cells were the first trials to target these cells. Nowadays, many other types of intervention are under investigation, such as adoptive NK cell immunotherapy. In this paper, we will discuss the biology and function of NK cells in cancer immunosurveillance and therapeutic approaches against cancer via using NK cells.


2015 ◽  
Vol 90 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Georges Abboud ◽  
Vikas Tahiliani ◽  
Pritesh Desai ◽  
Kyle Varkoly ◽  
John Driver ◽  
...  

ABSTRACTIn establishing a respiratory infection, vaccinia virus (VACV) initially replicates in airway epithelial cells before spreading to secondary sites of infection, mainly the draining lymph nodes, spleen, gastrointestinal tract, and reproductive organs. We recently reported that interferon gamma (IFN-γ) produced by CD8 T cells ultimately controls this disseminated infection, but the relative contribution of IFN-γ early in infection is unknown. Investigating the role of innate immune cells, we found that the frequency of natural killer (NK) cells in the lung increased dramatically between days 1 and 4 postinfection with VACV. Lung NK cells displayed an activated cell surface phenotype and were the primary source of IFN-γ prior to the arrival of CD8 T cells. In the presence of an intact CD8 T cell compartment, depletion of NK cells resulted in increased lung viral load at the time of peak disease severity but had no effect on eventual viral clearance, disease symptoms, or survival. In sharp contrast, RAG−/−mice devoid of T cells failed to control VACV and succumbed to infection despite a marked increase in NK cells in the lung. Supporting an innate immune role for NK cell-derived IFN-γ, we found that NK cell-depleted or IFN-γ-depleted RAG−/−mice displayed increased lung VACV titers and dissemination to ovaries and a significantly shorter mean time to death compared to untreated NK cell-competent RAG−/−controls. Together, these findings demonstrate a role for IFN-γ in aspects of both the innate and adaptive immune response to VACV and highlight the importance of NK cells in T cell-independent control of VACV in the respiratory tract.IMPORTANCEHerein, we provide the first systematic evaluation of natural killer (NK) cell function in the lung after infection with vaccinia virus, a member of thePoxviridaefamily. The respiratory tract is an important mucosal site for entry of many human pathogens, including poxviruses, but precisely how our immune system defends the lung against these invaders remains unclear. Natural killer cells are a type of cytotoxic lymphocyte and part of our innate immune system. In recent years, NK cells have received increasing levels of attention following the discovery that different tissues contain specific subsets of NK cells with distinctive phenotypes and function. They are abundant in the lung, but their role in defense against respiratory viruses is poorly understood. What this study demonstrates is that NK cells are recruited, activated, and contribute to protection of the lung during a severe respiratory infection with vaccinia virus.


2019 ◽  
Vol 21 (10) ◽  
Author(s):  
Miriam Santiago Kimpo ◽  
Bernice Oh ◽  
Shawn Lee

Abstract Purpose of Review We aim to review the most recent findings in the use of NK cells in childhood cancers. Recent Findings Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing’s sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. Summary NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 711
Author(s):  
Elisa C. Toffoli ◽  
Abdolkarim Sheikhi ◽  
Yannick D. Höppner ◽  
Pita de Kok ◽  
Mahsa Yazdanpanah-Samani ◽  
...  

Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.


2021 ◽  
Vol 22 (2) ◽  
pp. 656
Author(s):  
Hantae Jo ◽  
Byungsun Cha ◽  
Haneul Kim ◽  
Sofia Brito ◽  
Byeong Mun Kwak ◽  
...  

Natural killer (NK) cells are lymphocytes that can directly destroy cancer cells. When NK cells are activated, CD56 and CD107a markers are able to recognize cancer cells and release perforin and granzyme B proteins that induce apoptosis in the targeted cells. In this study, we focused on the role of phytoncides in activating NK cells and promoting anticancer effects. We tested the effects of several phytoncide compounds on NK-92mi cells and demonstrated that α-pinene treatment exhibited higher anticancer effects, as observed by the increased levels of perforin, granzyme B, CD56 and CD107a. Furthermore, α-pinene treatment in NK-92mi cells increased NK cell cytotoxicity in two different cell lines, and immunoblot assays revealed that the ERK/AKT pathway is involved in NK cell cytotoxicity in response to phytoncides. Furthermore, CT-26 colon cancer cells were allografted subcutaneously into BALB/c mice, and α-pinene treatment then inhibited allografted tumor growth. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2625-2632 ◽  
Author(s):  
Francesco Colucci ◽  
Sandrine I. Samson ◽  
Rodney P. DeKoter ◽  
Olivier Lantz ◽  
Harinder Singh ◽  
...  

Abstract PU.1 is a member of the Ets family of transcription factors required for the development of various lymphoid and myeloid cell lineages, but its role in natural killer (NK) cell development is not known. The study shows that PU.1 is expressed in NK cells and that, on cell transfer into alymphoid Rag2/γc−/−mice, hematopoietic progenitors of PU.1−/−fetal liver cells could generate functional NK cells but not B or T cells. Nevertheless, the numbers of bone marrow NK cell precursors and splenic mature NK cells were reduced compared to controls. Moreover,PU.1−/− NK cells displayed reduced expression of the receptors for stem cell factor and interleukin (IL)-7, suggesting a nonredundant role for PU.1 in regulating the expression of these cytokine receptor genes during NK cell development.PU.1−/− NK cells also showed defective expression of inhibitory and activating members of the Ly49 family and failed to proliferate in response to IL-2 and IL-12. Thus, despite the less stringent requirement for PU.1 in NK cell development compared to B and T cells, PU.1 regulates NK cell differentiation and homeostasis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Gianchecchi ◽  
Domenico V. Delfino ◽  
Alessandra Fierabracci

Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


Sign in / Sign up

Export Citation Format

Share Document