scholarly journals Influence of Powder Particle Morphology on the Static and Fatigue Properties of Laser Powder Bed-Fused Ti-6Al-4V Components

2020 ◽  
Vol 4 (4) ◽  
pp. 107
Author(s):  
Salah Eddine Brika ◽  
Vladimir Brailovski

In this work, two Ti-6Al-4V powder lots were produced using two different techniques: plasma atomization and gas atomization, with the first producing more spherical particles than the second. Testing specimens were then manufactured with these powder lots using an identical set of printing parameters and the same laser powder bed fusion system. Next, the porosity levels and distributions as well as the static and fatigue properties of the specimens from both powder lots were compared. Regarding the static mechanical properties, a noticeable difference was observed between the plasma-atomized powder specimens and their gas-atomized equivalents (7% greater ultimate and 4% greater yield strengths, but 3% lower elongation to failure, respectively). However, with regard to the fatigue resistance, the advantages of the plasma-atomized powder specimens in terms of their mechanical resistance were somewhat counterbalanced by the presence of pores aligned in the direction perpendicular to that of applied load. Conversely, specimens printed with the gas-atomized powder manifested a similar level of porosity, but a uniform pore distribution, which reduced the impact of the processing-induced porosity on fatigue cracks initiation and propagation.

2019 ◽  
Vol 3 (3) ◽  
pp. 75
Author(s):  
Alena Kreitcberg ◽  
Karine Inaekyan ◽  
Sylvain Turenne ◽  
Vladimir Brailovski

The microstructure and mechanical properties of IN625 alloy processed by laser powder bed fusion (LPBF) and then subjected to stress relief annealing, high temperature solution treatment, and hot isostatic pressing were studied. Tensile testing to failure was carried out in the 25–871 °C temperature range. Creep testing was conducted at 760 °C under 0.5–0.9 yield stress conditions. The results of the present study provided valuable insights into the static and creep properties of LPBF IN625 alloy, as compared to a wrought annealed alloy of similar composition. It was shown that at temperatures below 538 °C, the mechanical resistance and elongation to failure of the LPBF alloy were similar to those of its wrought counterpart, whereas at higher temperatures, the elongation to failure of the LPBF alloy became significantly lower than that of the wrought alloy. The solution-treated LPBF alloy exhibited significantly improved creep properties at 760 °C as compared to the wrought annealed alloy, especially under intermediate and low levels of stress.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 709
Author(s):  
Uwe Zerbst ◽  
Mauro Madia ◽  
Giovanni Bruno ◽  
Kai Hilgenberg

The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the as-built components; and (c) residual stresses, which are very often present in the as-built parts and need to be removed by post-fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics-based approaches which, unlike common methodologies, cover the specific characteristics of so-called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L-PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L-PBF components.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Zhiwei Wu ◽  
Maosheng Yang ◽  
Kunyu Zhao

The new generation of bearing steel has good comprehensive properties, which can satisfy most of the requirements of bearing steel in a complex environment. In the presented work, fatigue properties of 15Cr14Co12Mo5Ni2 bearing steel have been investigated by means of rotating bending fatigue tests on smooth bar specimens after carburization and heat treatment. Optical microscope, scanning electron microscopy, electron backscatter diffraction, and Image-Pro Plus software were used to analyze the fracture, microstructure, and carbides. The results suggest that the fatigue strength at room temperature and 500 °C is 1027 MPa and 585 MPa, respectively. Scanning electron micrographic observations on the fracture surface of the fatigue specimens at 500 °C show that fatigue cracks usually initiate from voids in the carburized case and oxide layer on the surface of steel. The failure mode in the carburized case is a quasi-cleavage fracture, and with the increase of crack propagation depth, the failure mode gradually changes to fatigue and creep-fatigue interaction. With the increase of the distance from the surface, the size of the martensite block decreases and the fracture surface shows great fluctuation.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1046
Author(s):  
Balachander Gnanasekaran ◽  
Jie Song ◽  
Vijay Vasudevan ◽  
Yao Fu

Laser powder bed fusion (LPBF) has been increasingly used in the fabrication of dense metallic structures. However, the corrosion related properties of LPBF alloys, in particular environment-assisted cracking, such as corrosion fatigue properties, are not well understood. In this study, the corrosion and corrosion fatigue characteristics of LPBF 316L stainless steels (SS) in 3.5 wt.% NaCl solution have been investigated using an electrochemical method, high cycle fatigue, and fatigue crack propagation testing. The LPBF 316L SSs demonstrated significantly improved corrosion properties compared to conventionally manufactured 316L, as reflected by the increased pitting and repassivation potentials, as well as retarded crack initiation. However, the printing parameters did not strongly affect the pitting potentials. LPBF samples also demonstrated enhanced capabilities of repassivation during the fatigue crack propagation. The unique microstructural features introduced during the printing process are discussed. The improved corrosion and corrosion fatigue properties are attributed to the presence of columnar/cellular subgrains formed by dislocation networks that serve as high diffusion paths to transport anti-corrosion elements.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Chao Gu ◽  
Min Wang ◽  
Yanping Bao ◽  
Fuming Wang ◽  
Junhe Lian

The fatigue property is significantly affected by the inner inclusions in steel. Due to the inhomogeneity of inclusion distribution in the micro-scale, it is not straightforward to quantify the effect of inclusions on fatigue behavior. Various investigations have been performed to correlate the inclusion characteristics, such as inclusion fraction, size, and composition, with fatigue life. However, these studies are generally based on vast types of steels and even for a similar steel grade, the alloy concept and microstructure information can still be of non-negligible difference. For a quantitative analysis of the fatigue life improvement with respect to the inclusion engineering, a systematic and carefully designed study is still needed to explore the engineering dimensions of inclusions. Therefore, in this study, three types of bearing steels with inclusions of the same types, but different sizes and amounts, were produced with 50 kg hot state experiments. The following forging and heat treatment procedures were kept consistent to ensure that the only controlled variable is inclusion. The fatigue properties were compared and the inclusions that triggered the fatigue cracks were analyzed to deduce the critical sizes of inclusions in terms of fatigue failure. The results show that the critical sizes of different inclusion types vary in bearing steels. The critical size of the spinel is 8.5 μm and the critical size of the calcium aluminate is 13.5 μm under the fatigue stress of 1200 MPa. In addition, with the increase of the cleanliness of bearing steels, the improvement of fatigue properties will reach saturation. Under this condition, further increasing of the cleanliness of the bearing steel will not contribute to the improvement of fatigue property for the investigated alloy and process design.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2011 ◽  
Vol 213 (1-3) ◽  
pp. 27-35 ◽  
Author(s):  
Stephan G. Maas ◽  
Gerhard Schaldach ◽  
Eva M. Littringer ◽  
Axel Mescher ◽  
Ulrich J. Griesser ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 868 ◽  
Author(s):  
Jorge Ramos-Hernández ◽  
Juan Ragazzo-Sánchez ◽  
Montserrat Calderón-Santoyo ◽  
Rosa Ortiz-Basurto ◽  
Cristina Prieto ◽  
...  

High degree of polymerization Agave fructans (HDPAF) are presented as a novel encapsulating material. Electrospraying coating (EC) was selected as the encapsulation technique and β-carotene as the model bioactive compound. For direct electrospraying, two encapsulation methodologies (solution and emulsion) were proposed to find the formulation which provided a suitable particle morphology and an adequate concentration of β-carotene encapsulated in the particles to provide a protective effect of β-carotene by the nanocapsules. Scanning electron microscopy (SEM) images showed spherical particles with sizes ranging from 440 nm to 880 nm depending on the concentration of HDPAF and processing parameters. FTIR analysis confirmed the interaction and encapsulation of β-carotene with HDPAF. The thermal stability of β-carotene encapsulated in HDPAF was evidenced by thermogravimetric analysis (TGA). The study showed that β-carotene encapsulated in HDPAF by the EC method remained stable for up to 50 h of exposure to ultraviolet (UV) light. Therefore, HDPAF is a viable option to formulate nanocapsules as a new encapsulating material. In addition, EC allowed for increases in the ratio of β-carotene:polymer, as well as its photostability.


2021 ◽  
Author(s):  
Chance A. Norris ◽  
Mukul Parmananda ◽  
Scott Alan Roberts ◽  
Partha P. Mukherjee

Graphite electrodes in the lithium-ion battery exhibit various particle shapes, including spherical and platelet morphologies, which influence structural and electrochemical characteristics. It is well established that porous structures exhibit spatial heterogeneity, and particle morphology can influence transport properties. The impact of particle morphology on the heterogeneity and anisotropy of geometric and transport properties has not been previously studied. This study characterizes the spatial heterogeneities of eighteen graphite electrodes at multiple length scales by calculating and comparing structural anisotropy, geometric quantities, and transport properties (pore-scale tortuosity and electrical conductivity). We found that particle morphology and structural anisotropy play an integral role in determining the spatial heterogeneity of directional tortuosity and its dependency on pore-scale heterogeneity. Our analysis reveals that the magnitude of in-plane and through-plane tortuosity difference influences the multiscale heterogeneity in graphite electrodes.


Sign in / Sign up

Export Citation Format

Share Document