The impact of spray drying outlet temperature on the particle morphology of mannitol

2011 ◽  
Vol 213 (1-3) ◽  
pp. 27-35 ◽  
Author(s):  
Stephan G. Maas ◽  
Gerhard Schaldach ◽  
Eva M. Littringer ◽  
Axel Mescher ◽  
Ulrich J. Griesser ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


2021 ◽  
Author(s):  
Chance A. Norris ◽  
Mukul Parmananda ◽  
Scott Alan Roberts ◽  
Partha P. Mukherjee

Graphite electrodes in the lithium-ion battery exhibit various particle shapes, including spherical and platelet morphologies, which influence structural and electrochemical characteristics. It is well established that porous structures exhibit spatial heterogeneity, and particle morphology can influence transport properties. The impact of particle morphology on the heterogeneity and anisotropy of geometric and transport properties has not been previously studied. This study characterizes the spatial heterogeneities of eighteen graphite electrodes at multiple length scales by calculating and comparing structural anisotropy, geometric quantities, and transport properties (pore-scale tortuosity and electrical conductivity). We found that particle morphology and structural anisotropy play an integral role in determining the spatial heterogeneity of directional tortuosity and its dependency on pore-scale heterogeneity. Our analysis reveals that the magnitude of in-plane and through-plane tortuosity difference influences the multiscale heterogeneity in graphite electrodes.


Author(s):  
Aleksandra A. Jovanović ◽  
Steva M. Lević ◽  
Vladimir B. Pavlovic ◽  
Smilja B. Markovic ◽  
Rada V. Pjanovic ◽  
...  

Freeze drying was compared with spray drying regarding feasibility to process wild thyme drug in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration, heat-, ultrasound-, and microwave-assisted extractions. Higher powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53-75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation distinguished from others by higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process affected mainly position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray dried formulations compared to freeze dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151-223 µm) compared to small microspheres (~8 µm) in spray-dried powder.


2007 ◽  
Vol 544-545 ◽  
pp. 733-736
Author(s):  
Moon Kwan Choi ◽  
Jin Sang Cho ◽  
Sung Min Joo ◽  
Jin Koo Park ◽  
Ji Whan Ahn ◽  
...  

The purpose of this work is to influence of CaO concentrations of 5.0 wt.% and 10.0 wt.%, slurry feeding rate of 200~400 /min, rotating rate of drum of 5,000 and 10,000 rpm, inlet and outlet temperature on the synthesis of Ca(OH)2 powder, and the synthesis of precipitated calcium carbonate by carbonation process using Ca(OH)2 prepared by spray drying method. As the feeding rate of slurry was increased, the particle size of Ca(OH)2 was decreased. Regardless of rotating rate of drum, when the concentration of CaO was 5.0 wt.% and 10.0 wt.%, the morphology of Ca(OH)2 showed spherical shape of 10~30 μm and 20~60 μm, respectively. The specific surface area of synthesized Ca(OH)2 was 27~30 m2/g. When the initial reaction temperature was 11 °C and 30 °C, the shape and particle size of precipitated calcium carbonate synthesized in the carbonation process showed the rectangular shape of 0.1~0.4 μm and the spindle shape of 0.5~1.0 μm, respectively.


2019 ◽  
Vol 14 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Przemysław Łukasz Kowalczewski ◽  
Anna Olejnik ◽  
Wojciech Białas ◽  
Piotr Kubiak ◽  
Aleksander Siger ◽  
...  

AbstractPotato juice (PJ), commonly considered a burdensome waste, is rich in various compounds with bioactive properties. It has long been considered a remedy for gastric problems in traditional folk medicine. If valorization of PJ through implementation in the production of functional foods is to be considered, stabilization methods must be developed to allow long-term storage of this seasonal product. It is important that such methods are chosen with regard to their effect on the bioactive value of the obtained product. In this study, the impact of four stabilization methods on the antioxidant and cytotoxic activities of PJ was investigated. Elevated temperatures were used in thermal deproteinization used to obtain DPJW (deproteinated potato juice water) and spray-drying of FPJ (fresh potato juice) that resulted in SDPJ. Freeze drying and cryoconcentration were the low temperature processing methods that yielded PJL (potato juice lyophilisate) and CPJ (cryocorncentrated potato juice), respectively. All processed materials were characterized chemically and compared with raw materials in terms of phenolic compounds content, antioxidant activity as well as cytotoxicity to human tumor cells isolated from the gastric mucosa (Hs476T cell line), colon (Caco-2 and HT-29 cell lines), and normal cells isolated from the small intestine and colon epithelium (IEC-6 and NCM460 cell lines). It was stated that high-temperature processes – thermal deproteinization and spray-drying – yielded products with increased antioxidant potential (TEAC) that also showed increased cytotoxic activity towards intestinal cancer cells. At the same time the cytotoxicity towards normal cells remained on par with that of fresh PJ (IEC-6 cells) or decreased (NCM460 cells). Thermal deproteinization significantly decreased the content of glycoalcaloids in the juice, while spray drying did not have such an effect. The two low-temperature processes investigated – cryoconcentration and freeze drying – did not affect the PJ cytotoxic activity towards any of the cell lines used in the tests, whereas they did affect the antioxidant properties and glycoalcaloids content of PJ.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 309 ◽  
Author(s):  
Yulong Song ◽  
Haidan Wang ◽  
Feng Cao

As a natural fluid with superior environment advantages, CO2 is used to constitute a dual transcritical system to reduce performance deterioration under high gas-cooler outlet temperature. Aiming at the system configuration, improvement potential, and optimization, the proposed system is deeply analyzed, and corresponding coupling models are presented in detail. First, the veracity of simulation models is completely verified by comparing with previous measurements. Then, the existence of the optimal intermediate temperature is validated, while the optimal values are found to increase with the augmentation in ambient and water-feed temperatures. Moreover, the negative effects of the pinch point on the heat transfer inside the gas cooler could be greatly reduced by using the dual gas cooler. Finally, a predictive correlation for optimal intermediate temperature determination with ambient and water-feed temperature as independent variables is proposed, which provides a theoretical basis for the proposed system to realize efficient control in the industrialization process.


Author(s):  
Duc Quang Nguyen ◽  
Sabah Mounir ◽  
Karim Allaf

AbstractThe powder mixture of gum arabic and maltodextrin was produced by spray drying. The inlet air temperature of spray dryer was varied from 160 °C to 260 °C and the maltodextrin content was varied from 0 to 50 % in the feed solution with the concentration of 42.5 % (w/v) total solids by weight. The properties of the finished product were characterized to examine the impact of changes in these operating parameters. The results showed that: the inlet air temperature had a stronger influence on the properties of finished product than the MD/GA ratio, whereas the feed rate was more clearly affected by the MD/GA ratio. Two optimal parameters obtained include MD/GA ratio equal to 0.615 and the inlet air temperature of spray dryer Te = 258 °C.


2011 ◽  
Vol 465 ◽  
pp. 219-222 ◽  
Author(s):  
Grzegorz Moskal ◽  
Andrzej Grabowski

This article describes the microstructures, chemical and phase compositions, surface morphologies, and internal structures of three ZrO2 x 8Y2O3-type of powders obtained by different manufacturing methods. The first of the analyzed powders was a conventionally prepared form of the material obtained by the spraying method. The second powder was a spherically shaped form of the material obtained from the spray drying process. It displayed a distinctive surface morphology characterized by a rough structure with visible cavities. The particle sizes of these two powders were comparable. The third form of the powder was classified as “nano” and was obtained by a grinding and crushing method. The shapes of individual particles were generally polyhedral with smooth surfaces and no visible porosity. A study of the chemical composition of each form of the powder did not show significant differences, similar to the results obtained from the phase composition study. The results of thermal diffusivity and electrical impedance studies indicated that the electrical and thermal properties of the powders with spherical structures, i.e., sprayed and spray drying, were very similar. The thermal diffusivity and impedance properties of these two powders were greater than those of the ground powder with a finer grain size.


Sign in / Sign up

Export Citation Format

Share Document