scholarly journals Probiotic Properties and Potentiality of Lactiplantibacillus plantarum Strains for the Biological Control of Chalkbrood Disease

2021 ◽  
Vol 7 (5) ◽  
pp. 379
Author(s):  
Massimo Iorizzo ◽  
Bruno Testa ◽  
Sonia Ganassi ◽  
Silvia Jane Lombardi ◽  
Mario Ianiro ◽  
...  

Ascosphaera apis is an entomopathogenic fungus that affects honeybees. In stressful conditions, this fungus (due not only to its presence, but also to the combination of other biotic and abiotic stressors) can cause chalkbrood disease. In recent years, there has been increasing attention paid towards the use of lactic acid bacteria (LAB) in the honeybees’ diets to improve their health, productivity and ability to resist infections by pathogenic microorganisms. The screening of 22 strains of Lactiplantibacillus plantarum, isolated from the gastrointestinal tracts of honeybees and beebread, led to the selection of five strains possessing high antagonistic activity against A. apis. This study focused on the antifungal activity of these five strains against A. apis DSM 3116 and DSM 3117 using different matrices: cell lysate, broth culture, cell-free supernatant and cell pellet. In addition, some functional properties and the antioxidant activity of the five L. plantarum strains were evaluated. All five strains exhibited high antagonistic activity against A. apis, good surface cellular properties (extracellular polysaccharide (EPS) production and biofilm formation) and antioxidant activity. Although preliminary, these results are encouraging, and in future investigations, the effectiveness of these bacteria as probiotics in honeybee nutrition will be tested in vivo in the context of an eco-friendly strategy for the biological control of chalkbrood disease.

2014 ◽  
Vol 58 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Mohamed O. M. Omar ◽  
Adhm M. Moustafa ◽  
Mohammad J. Ansari ◽  
Abdelsalam M. Anwar ◽  
Bassam F. Fahmy ◽  
...  

Abstract The objective of this study was to isolate and characterize bacterial strains associated with the gut of the hybrid Carniolan honey bee, Apis mellifera carnica, and to determine their in vitro and in vivo potential against Ascosphaera apis, the causal organism of chalkbrood disease, with the purpose of exploring feasible biological control. Six bacterial strains were isolated from healthy worker honey bees by culture-dependent methods. Six fungal strains (A3, A4, A7, A8, A9, and A15) of A. apis were isolated from larvae suffering from chalkbrood disease on Yeast-Glucose-Starch agar (YGPSA) medium. All bacteria were identified by a combination of morphology, Gram stain, and 16S rRNA sequence analysis, and fungal strains were identified by morphology and 5.8S rRNA. In vitro and in vivo inhibition assays were carried out to determine the ability of bacterial isolates to inhibit A. apis, the causal agent of chalkbrood disease. The analysis of 16S rRNA sequences revealed that four bacterial strains (B2, B4, B10, and B100) belong to Bacillus subtilis species, and two strains (P1 and P5) belong to Pseudomonas fluorescence. Significant differences in antagonistic activity of all bacterial strains were observed. B. subtilis isolate B2 showed the highest antagonistic activity, as measured by the inhibition zone against A. apis, followed by the P1 strain of P. fluorescence. SEM analysis also supports the antagonistic activity of these bacteria against A. apis. This study provides a theoretical basis for biological control of honey bee chalkbrood disease.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Massimo Iorizzo ◽  
Silvia Jane Lombardi ◽  
Sonia Ganassi ◽  
Bruno Testa ◽  
Mario Ianiro ◽  
...  

Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in “probiotic syrup”, useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.


2019 ◽  
Author(s):  
Sudun ◽  
Lifeng Liang ◽  
Zhenzhen Li ◽  
Qingnan Lin ◽  
Can Peng ◽  
...  

AbstractLactobacillus plantarum was not only one of the most popular probiotics, but also one of the most versatile lactic acid bacteria. L. plantarum LLY-606 and L. plantarum pc-26 are strains isolated from human gut that are intended to be explored as probiotics. In this study, the genome sequences of LLY-606 and pc-26 were sequenced, and multiple genes related to probiotic properties were analyzed. First, the pathogenicity of these strains was evaluated, and antibiotic resistance genes were surveyed at the whole genome level to determine their primary safety. And then, genes for stress response, plantaricin (pln) biosynthesis, extracellular polysaccharide (EPS) biosynthesis, and bile salt hydrolase (BSH) were analyzed to evaluate their industrial utilization, adhesive capacity, and survival ability in gut, which were properties fundamental for probiotic strains. The physiological features assured by these genes were assayed in vitro. The strains were then evaluated in vivo for their ability to lower cholesterol, and they were both found to be effective in improving hypercholesterolemia in golden hamsters. In this study, a genetic pre-evaluation was conducted through genome analysis combined with in vitro physiological assay, and the probiotic properties of these strains were verified in vivo.


Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
A Vora ◽  
V Londhe ◽  
N Pandita

2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2019 ◽  
Vol 15 (7) ◽  
pp. 771-780
Author(s):  
He-Min Li ◽  
Ting Gu ◽  
Wen-Yu Wu ◽  
Shao-Peng Yu ◽  
Tian-Yuan Fan ◽  
...  

Background: Exogenous antioxidants are considered as a promising therapeutic approach to treat neurodegenerative diseases since they could prevent and/or minimize the neuronal damage by oxidation. Objective: Three series of lipophilic compounds structurally based on scutellarein (2), which is one metabolite of scutellarin (1) in vivo, have been designed and synthesized. Methods: Their antioxidant activity was evaluated by detecting the 2-thiobarbituric acid reactive substance (TBARS) produced in the ferrous salt/ascorbate-induced autoxidation of lipids, which were present in microsomal membranes of rat hepatocytes. The lipophilicity of these compounds indicated as partition coefficient between n-octanol and buffer was investigated by ultraviolet (UV) spectrophotometer. Results: This study indicated that compound 5e which had a benzyl group substituted at the C4'- OH position showed a potent antioxidant activity and good lipophilicity. Conclusion: 5e could be an effective candidate for preventing or reducing the oxidative status associated with the neurodegenerative processes.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


2021 ◽  
Vol 19 (1) ◽  
pp. 228-237
Author(s):  
Yulong Zhang ◽  
Xueying Chen ◽  
Ping Hu ◽  
Qianwei Liao ◽  
Yong Luo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document