scholarly journals Volatile Organic Compound Profile Fingerprints Using DART–MS Shows Species-Specific Patterns in Fusarium Mycotoxin Producing Fungi

2021 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Mark Busman ◽  
Ethan Roberts ◽  
Robert H. Proctor ◽  
Chris M. Maragos

Fungal volatile organic compounds (VOCs) are low-molecular weight fungal metabolites that have high vapor pressure at ambient temperatures and can function as airborne signals. Here, we report a VOC study of several different species of Fusarium. Direct analysis in real time mass spectrometry (DART–MS) was applied for non-invasive VOC fingerprinting of Fusarium isolates growing under standardized conditions. A large number of ions were detected from the headspaces of the Fusarium species sampled here. Ions were detected with distinctively high concentrations in some species. While there were few VOCs produced by only one species, the relative concentrations of VOCs differed between species. The methodology has potential for convenient detection and identification of Fusarium contamination in agricultural commodities.

2004 ◽  
Vol 67 (6) ◽  
pp. 1278-1283 ◽  
Author(s):  
BELÉN PATIÑO ◽  
SALVADOR MIRETE ◽  
M. TERESA GONZÁLEZ-JAÉN ◽  
GIUSEPPINA MULÉ ◽  
M. TERESA RODRÍGUEZ ◽  
...  

Fusarium verticillioides is considered to be the main source of fumonisins, a group of toxins that contaminate commodities and result in chronic and acute diseases affecting humans and animals. The detection and control of this species is crucial to prevent fumonisins from entering the food chain. The objective of the present research was to develop a specific, sensitive, and robust PCR assay to detect F. verticillioides strains using two pairs of specific primers for F. verticillioides, which have been designed on the basis of the intergenic spacer region of the rDNA units. The first pair of primers was F. verticillioides species specific, whereas the second pair of primers detected fumonisin-producing F. verticillioides strains. This second pair of primers allowed for the discrimination between the major group of F. verticillioides strains, fumonisin-producing strains that are mainly associated with crops, and a minor group of strains, non–fumonisin-producing strains that are associated with bananas. Fifty-four strains of F. verticillioides from different geographical regions and hosts were tested using both sets of primers. Sixteen additional Fusarium species were examined. The specificity of the primer sequences provides the basis for a simple, rapid, accurate, and sensitive detection and identification method of this fungal species that represents a risk for human and animal health.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104195 ◽  
Author(s):  
Zhenyue Lin ◽  
Shiqiang Xu ◽  
Youxiong Que ◽  
Jihua Wang ◽  
Jack C. Comstock ◽  
...  

2015 ◽  
Vol 24 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Ramesh P. Arasaradnam ◽  
Michael McFarlane ◽  
Emma Daulton ◽  
Erik Westenbrink ◽  
Nicola O’Connell ◽  
...  

Background & Aims: Non-Alcoholic Fatty Liver Disease (NAFLD) is the commonest cause of chronic liver disease in the western world. Current diagnostic methods including Fibroscan have limitations, thus there is a need for more robust non-invasive screening methods. The gut microbiome is altered in several gastrointestinal and hepatic disorders resulting in altered, unique gut fermentation patterns, detectable by analysis of volatile organic compounds (VOCs) in urine, breath and faeces. We performed a proof of principle pilot study to determine if progressive fatty liver disease produced an altered urinary VOC pattern; specifically NAFLD and Non-Alcoholic Steatohepatitis (NASH).Methods: 34 patients were recruited: 8 NASH cirrhotics (NASH-C); 7 non-cirrhotic NASH; 4 NAFLD and 15 controls. Urine was collected and stored frozen. For assay, the samples were defrosted and aliquoted into vials, which were heated to 40±0.1°C and the headspace analyzed by FAIMS (Field Asymmetric Ion Mobility Spectroscopy). A previously used data processing pipeline employing a Random Forrest classification algorithm and using a 10 fold cross validation method was applied.Results: Urinary VOC results demonstrated sensitivity of 0.58 (0.33 - 0.88), but specificity of 0.93 (0.68 - 1.00) and an Area Under Curve (AUC) 0.73 (0.55 -0.90) to distinguish between liver disease and controls. However, NASH/NASH-C was separated from the NAFLD/controls with a sensitivity of 0.73 (0.45 - 0.92), specificity of 0.79 (0.54 - 0.94) and AUC of 0.79 (0.64 - 0.95), respectively.Conclusions: This pilot study suggests that urinary VOCs detection may offer the potential for early non-invasive characterisation of liver disease using 'smell prints' to distinguish between NASH and NAFLD.


2008 ◽  
Vol 53 (No. 3) ◽  
pp. 97-104 ◽  
Author(s):  
M. Zouhar ◽  
M. Marek ◽  
O. Douda ◽  
J. Mazáková ◽  
P. Ryšánek

<i>Ditylenchus dipsaci</i>, the stem nematode, is a migratory endoparasite of over 500 species of angiosperms. The main method of <i>D. dipsaci</i> control is crop rotation, but the presence of morphologically indistinguishable host races with different host preferences makes rotation generally ineffective. Therefore, a sensitive, rapid, reliable, as well as cost effective technique is needed for identification of <i>D. dipsaci</i> in biological samples. This study describes the development of species-specific pairs of PCR oligonucleotides for detection and identification of the <i>D. dipsaci</i> stem nematode in various plant hosts. Designed DIT-2 primer pair specifically amplified a fragment of 325 bp, while DIT-5 primer pair always produced a fragment of 245 bp in all <i>D. dipsaci</i> isolates. Two developed SCAR primer pairs were further tested using template DNA extracted from a collection of twelve healthy plant hosts; no amplification was however observed. The developed PCR protocol has proved to be quite sensitive and able to specifically detect <i>D. dipsaci</i> in artificially infested plant tissues.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Alberto Millán ◽  
Núria Sala ◽  
Mercè Torres ◽  
Ramon Canela-Garayoa

The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.


Author(s):  
Mario Vincenzo Russo ◽  
Ivan Notardonato ◽  
Alberto Rosada ◽  
Giuseppe Ianiri ◽  
Pasquale Avino

This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid–liquid extraction and static headspace) followed by gas chromatography–electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L−1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g−1), antimony (77.7 µg g−1), strontium (12,039 µg g−1) and zinc (103 µg g−1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g−1): the levels found in this paper (ranging between 1 and 5100 µg g−1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 584
Author(s):  
Kelvin de Jesús Beleño-Sáenz ◽  
Juan Martín Cáceres-Tarazona ◽  
Pauline Nol ◽  
Aylen Lisset Jaimes-Mogollón ◽  
Oscar Eduardo Gualdrón-Guerrero ◽  
...  

More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12–24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.


Sign in / Sign up

Export Citation Format

Share Document