scholarly journals SDN-Based Routing for Backhauling in Ultra-Dense Networks

2019 ◽  
Vol 8 (2) ◽  
pp. 23 ◽  
Author(s):  
Dania Marabissi ◽  
Romano Fantacci ◽  
Linda Simoncini

Ultra-Dense Network (UDN) deployment is considered a key element to achieve the requested capacity in future fifth-generation (5G) mobile networks. Backhaul networks in UDNs are formed by heterogeneous links with multi-hop connections and must handle massive traffic. Backhauling in future 5G networks may represent the capacity bottleneck. Therefore, there is the need for efficient and flexible routing schemes able to handle the dynamism of the traffic load in capacity-limited networks. Toward this goal, the emerging Software-Defined Network (SDN) paradigm provides an efficient solution, transferring the routing operation from the data plane switches to a central controller, thus achieving more flexibility, efficiency, and faster convergence time in comparison to conventional networks. This paper proposes and investigates an SDN-approach for an efficient routing in a capacity-limited backhaul network that carries data and control traffic of a heterogeneous UDN. The routing algorithm is centralized in the SDN controller and two different types of traffic flow are considered: data and control plane coordination traffic. The goal is to reduce or even to avoid the amount of traffic that the backhaul network is not able to support, distributing in a fair way the eventual lack of bandwidth among different access points. Simulation results show that with the considered approach the performance significantly improves, especially when there is an excess of traffic load in the network. Moreover, thanks to the SDN-based design, the network can reconfigure the traffic routing depending on the changing conditions.

Author(s):  
Ramon Perez ◽  
Jaime Garcia-Reinoso ◽  
Aitor Zabala ◽  
Pablo Serrano ◽  
Albert Banchs

AbstractThe fifth generation (5G) of mobile networks is designed to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support the optimization of the network performance and validation of the KPIs, there exist the necessity of a flexible and efficient monitoring system and capable of realizing multi-site and multi-stakeholder scenarios. Nevertheless, for the evolution from 5G to 6G, the network is envisioned as a user-driven, distributed Cloud computing system where the resource pool is foreseen to integrate the participating users. In this paper, we present a distributed monitoring architecture for Beyond 5G multi-site platforms, where different stakeholders share the resource pool in a distributed environment. Taking advantage of the usage of publish-subscribe mechanisms adapted to the Edge, the developed lightweight monitoring solution can manage large amounts of real-time traffic generated by the applications located in the resource pool. We assess the performance of the implemented paradigm, revealing some interesting insights about the platform, such as the effect caused by the throughput of monitoring data in performance parameters such as the latency and packet loss, or the presence of a saturation effect due to software limitations that impacts in the performance of the system under specific conditions. In the end, the performance evaluation process has confirmed that the monitoring platform suits the requirements of the proposed scenarios, being capable of handling similar workloads in real 5G and Beyond 5G scenarios, then discussing how the architecture could be mapped to these real scenarios.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1387
Author(s):  
Oswaldo Sebastian Peñaherrera-Pulla ◽  
Carlos Baena ◽  
Sergio Fortes ◽  
Eduardo Baena ◽  
Raquel Barco

Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).


2020 ◽  
Vol 26 (3) ◽  
pp. 169-183
Author(s):  
Phudit Ampririt ◽  
Yi Liu ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
Leonard Barolli ◽  
...  

The Fifth Generation (5G) networks are expected to be flexible to satisfy demands of high-quality services such as high speed, low latencies and enhanced reliability from customers. Also, the rapidly increasing amount of user devices and high user’s requests becomes a problem. Thus, the Software-Defined Network (SDN) will be the key function for efficient management and control. To deal with these problems, we propose a Fuzzy-based SDN approach. This paper presents and compares two Fuzzy-based Systems for Admission Control (FBSAC) in 5G wireless networks: FBSAC1 and FBSAC2. The FBSAC1 considers for admission control decision three parameters: Grade of Service (GS), User Request Delay Time (URDT) and Network Slice Size (NSS). In FBSAC2, we consider as an additional parameter the Slice Priority (SP). So, FBSAC2 has four input parameters. The simulation results show that the FBSAC2 is more complex than FBSAC1, but it has a better performance for admission control.


LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


Author(s):  
Peter Racioppo ◽  
Wael Saab ◽  
Pinhas Ben-Tzvi

This paper presents the design and analysis of an underactuated, cable driven mechanism for use in a modular robotic snake. The proposed mechanism is composed of a chain of rigid links that rotate on parallel revolute joints and are actuated by antagonistic cable pairs and a multi-radius pulley. This design aims to minimize the cross sectional area of cable actuated robotic snakes and eliminate undesirable nonlinearities in cable displacements. A distinctive feature of this underactuated mechanism is that it allows planar serpentine locomotion to be accomplished with only two modular units, improving the snake’s ability to conform to desired curvature profiles and minimizing the control complexity involved in snake locomotion. First, the detailed mechanism and cable routing scheme are presented, after which the kinematics and dynamics of the system are derived and a comparative analysis of cable routing schemes is performed, to assist with design synthesis and control. The moment of inertia of the mechanism is modeled, for future use in the implementation of three-dimensional modes of snake motion. Finally, a planar locomotion strategy for snake robots is devised, demonstrated in simulation, and compared with previous studies.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 26
Author(s):  
Ramraj Dangi ◽  
Praveen Lalwani ◽  
Gaurav Choudhary ◽  
Ilsun You ◽  
Giovanni Pau

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate


Author(s):  
David Harborth ◽  
Maurice Pohl

According to Rahim Tafazolli from the University of Surrey, users can expect the “perception of infinite capacity” from the future of mobile networks. The fifth generation of mobile networks, 5G, is expected to be released in 2020 and steps up to fulfill various expectations. This article systematically reviews existing research on standardization of 5G and provides an outlook on how to continue best in the future. The review of existing literature shows areas in standardization research, like standardization from a user's perspective, that are rarely covered. In the second part, the focus shifts towards specific publications of relevant standardization organizations and stakeholders for the 5G standardization. By matching the current status of the 5G standardization with historical success factors derived in the first part, this research shows that the standardization process of 5G is on a good way but acknowledges that there is much work to do in the future.


Author(s):  
Kiyana Zolfaghar ◽  
Farid Khoshalhan ◽  
Mohammad Rabiei

Location-based advertising (LBA) opens up new frontiers for marketers to place their advertisements in front of consumers. LBA is a new form of marketing communication that uses location-tracking technology in mobile networks to target consumers with location-specific advertising on their cell phones. It provides more targeted communication and interaction between the marketer and its potential customers. This paper reviews different aspects of LBA advertising and investigates the drivers of consumer acceptance toward it. Achieving this, a research framework is developed to explore the factors influencing consumer intention for using LBA in Iran. Individuals’ responses to questions about intention to accept/use of LBA advertising were collected and analyzed with various factors modified from UTAUT with main constructs of utility expectancy, trust, effort expectancy, and control. While the model confirms the classical role of utility expectancy and effort expectancy as the key factors in technology acceptance, the results also show that users’ behavioral intentions are influenced by trust and their control on ads flow.


Sign in / Sign up

Export Citation Format

Share Document