scholarly journals Study of Agave Fiber-Reinforced Biocomposite Films

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 99 ◽  
Author(s):  
Cindu Annandarajah ◽  
Peng Li ◽  
Mitchel Michel ◽  
Yuanfen Chen ◽  
Reihaneh Jamshidi ◽  
...  

Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.

2020 ◽  
Vol 10 (3) ◽  
pp. 200-207
Author(s):  
Sabbir Ansari ◽  
Tasneem Fatma

Background: Poly-3-hydroxybutyrate (PHB) has attracted much consideration as biodegradable biocompatible polymer. This thermoplastic polymer has comparable material properties to polypropylene. Materials with more valuable properties may result from blending, a common practice in polymer science. Objective: In this paper, blends of PHB (extracted from cyanobacterium Nostoc muscorum NCCU- 442 with polyethylene glycol (PEG) were investigated for their thermal, tensile, hydrophilic and biodegradation properties. Methods: Blends were prepared in different proportions of PHB/PEG viz. 100/0, 98/2, 95/5, 90/10, 80/20, and 70/30 (wt %) using solvent casting technique. Morphological properties were investigated by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry and thermogravimetric analysis were done for thermal properties determination whereas the mechanical and hydrophilic properties of the blends were studied by means of an automated material testing system and contact angle analyser respectively. Biodegradability potential of the blended films was tested as percent weight loss by mixed microbial culture within 60 days. Results: The blends showed good misciblity between PEG and PHB, however increasing concentrations of plasticizer caused morphological alteration as evidenced by SEM micrographs. PEG addition (10 % and above) showed significant alternations in the thermal properties of the blends. Increase in the PEG content increased the elongation at break ratio i.e enhanced the required plasticity of PHB. Rate of microbial facilitated degradation of the blends was greater with increasing PEG concentrations. Conclusion: Blending with PEG increased the crucial polymeric properties of cyanobacterial PHB.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 426
Author(s):  
Beatriz Adriana Salazar-Cruz ◽  
María Yolanda Chávez-Cinco ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Galván ◽  
José Luis Rivera-Armenta

The purpose of the present work was to prepare polypropylene (PP) matrix composited filled with chemically treated pistachio shell particles (PTx), and evaluate their effect on the composites’ thermal properties. PP-PTx composites were formulated in different PTx content (from 2 to 10 phr) in a mixing chamber, using the melt-mixing process. The PTx were chemically treated using a NaOH solution and infrared spectroscopy (FTIR). According to thermogravimetric analysis (TGA), the treatment of pistachio shell particles resulted in the remotion of lignin and hemicellulose. The thermal stability was evaluated by means of TGA, where the presence of PTx in composites showed a positive effect compared with PP pristine. Thermal properties such as crystallization temperature (Tc), crystallization enthalpy (∆Hc), melting temperature (Tm) and crystallinity were determinate by means differential scanning calorimetry (DSC); these results suggest that the PTx had a nucleation effect on the PP matrix, increasing their crystallinity. Dynamic mechanical analysis (DMA) showed that stiffness of the composites increase compared with that PP pristine, as well as the storage modulus, and the best results were found at a PTx concentration of 4 phr. At higher concentrations, the positive effect decreased; however, they were better than the reference PP.


2021 ◽  
Vol 12 (5) ◽  
pp. 6960-6977

A distinct number used to characterize a molecular graph's chemical structure and significant chemical properties is a topological index. Quite a number of Vertex degree-based (VDB) indices have been introduced to investigate the structure of molecular compounds. Zeolites are a widely used family of aluminosilicates that have applications in chemistry, medicine, and commercial production due to their advantageous chemical properties. To aid in their creation, computer simulations have found millions of possible specific structures for zeolites. However, only a small percentage of these structures have been created. To aid in this discovery process, we extend the literature by computing the analytical expressions of VDB indices, VDB entropy measures, and VDB irregularity indices.


2013 ◽  
Vol 467 ◽  
pp. 122-126 ◽  
Author(s):  
T. Saravana Kannan ◽  
C. Piraiarasi ◽  
Abu Saleh Ahmed ◽  
Ani Farid Nasir

The present study aims to investigate the corrosion characteristics of copper commonly encountered in the spark ignition (SI) engine fuel system with Malaysian bioethanol and gasoline blends. Static immersion tests in E0 (gasoline), E10 and E85 were carried out at room temperature for 1320 h. Mechanical, physical and chemical properties of copper was investigated before and after immersion tests. Investigations were carried out on change in morphological properties using optical microscope; change in chemical structure using FTIR; change in mass and volume by weight loss measurement; hardness changes using universal hardness tester; and change of chemical properties of the fuel blends using total acid number titration method. The test results showed that corrosion of copper was increased with the high concentration of ethanol in the blends.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1119 ◽  
Author(s):  
U. Seeta Uthaya Kumar ◽  
S. N. Abdulmadjid ◽  
N. G. Olaiya ◽  
A. A. Amirul ◽  
S. Rizal ◽  
...  

Neem leaves extract was incorporated into the matrix of seaweed biopolymer, and the seaweed-neem biocomposite films were irradiated with various doses of gamma irradiation (0.5, 1.5, 2.5, 3.5, and 4.5 kGy). The physical, barrier, antimicrobial, and mechanical properties of the films were studied. The incorporation of 5% w/w neem leaves extract into a seaweed-based film, and gamma irradiation dose of 2.5 kGy was most effective for improved properties of the film. The results showed that the interfacial interaction of the seaweed-neem improved with physical changes in colour and opacity. The water solubility, moisture content, and water vapour permeability and biodegradability rate of the film reduced. The contact angle values increased, which was interpreted as improved hydrophobicity. The tensile strength and modulus of the films increased, while the elongation of the composite films decreased compared to the control film. The film’s antimicrobial activities against bacteria were improved. Thus, neem leaves extract in combination with the application of gamma irradiation enhanced the performance properties of the film that has potential as packaging material.


2020 ◽  
Vol 40 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Homa Maleki ◽  
Hossein Barani

AbstractThe stereocomplex formation is a promising method to improve the properties of poly(lactide) (PLA)-based products due to the strong interaction of the side-by-side arrangement of the molecular chains. Recently, electrospinning method has been applied to prepare PLA stereocomplex, which is more convenient. The objective of the current study is to make stereocomplexed PLA nanofibers using electrospinning method and compare their properties and structures with pure poly(l-lactide) (PLLA) fibers. The stereocomplexed fibers were electrospun from a blend solution of high molecular weight PLLA and poly(d-lactide) (1:1 ratio). The morphology of the obtained electrospun fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Differential scanning calorimetry was applied to study their thermal properties and crystallinity. Fourier transform infrared spectroscopy (FTIR) test was conducted on the samples to characterize their chemical properties. The SEM and AFM images indicated that smooth uniform fibers with a cylindrical structure were produced. Besides, the FTIR results and thermal properties confirmed that only stereocomplex crystallites formed in the resulting fibers via the electrospinning method.


2016 ◽  
Vol 722 ◽  
pp. 132-139 ◽  
Author(s):  
Tomáš Váchal ◽  
Rostislav Šulc ◽  
Tereza Janků ◽  
Pavel Svoboda

This paper describes chemical properties of fly ash from Circulating fluidized Bed Combustion (CFBC). There are shown thermal properties of fly ash using calorimetric measurement and the total content of calcium oxide CaO was determined. This paper describes the methods of measurement for determining these properties including granulometric measurement and chemical analysis. Also there were described and evaluated properties of fly ash and the reactivity of the fly ash was compared.


Sign in / Sign up

Export Citation Format

Share Document