scholarly journals Quantifying Joule Heating and Mass Transport in Metal Nanowires During Controlled Electromigration

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 310
Author(s):  
Mamiko Yagi ◽  
Jun-ichi Shirakashi

The nanoscale heat dissipation (Joule heating) and mass transport during electromigration (EM) have attracted considerable attention in recent years. Here, the EM-driven movement of voids in gold (Au) nanowires of different shapes (width range: 50–300 nm) was directly observed by performing atomic force microscopy. Using the data, we determined the average mass transport rate to be 105 to 106 atoms/s. We investigated the heat dissipation in L-shaped, straight-shaped, and bowtie-shaped nanowires. The maximum Joule heating power of the straight-shaped nanowires was three times that of the bowtie-shaped nanowires, indicating that EM in the latter can be triggered by lower power. Based on the power dissipated by the nanowires, the local temperature during EM was estimated. Both the local temperature and junction voltage of the bowtie-shaped nanowires increased with the decrease in the Joule heating power and current, while the current density remained in the order of 108 A/cm2. The straight-shaped nanowires exhibited the same tendency. The local temperature at each feedback point could be simply estimated using the diffusive heat transport relationship. These results suggest that the EM-driven mass transport can be controlled at temperatures much lower than the melting point of Au.

Author(s):  
Tsutomu Saito ◽  
Hirohiko Kitsuki ◽  
Makoto Suzuki ◽  
Toshishige Yamada ◽  
Drazen Fabris ◽  
...  

We study reliability of carbon nanofibers (CNFs) under high-current stress by examining CNF breakdown on four different configurations, suspended or supported, with/without tungsten deposition. The suspended results are consistently explained with a heat transport model taking into account Joule heating and heat dissipation along the CNF, while supported cases show a consistently larger current density just before breakdown, reflecting effective heat dissipation to the substrate.


Author(s):  
Nam-Trung Nguyen ◽  
Yi Sun ◽  
Yien-Chian Kwok

Joule heating is an undesirable effect in capillary electrophoresis (CE). The heat generated by the electrical current leads to a temperature gradient along the separation channel and consequently affects the separation quality. Since the heat is inversely proportional to the electric resistance of the separation column, increasing the electric resistance can reduce the effect of Joule heating. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50 μm to 200 μm. In this paper, we describe the method of reducing the cross-sectional area of the separation channel and increasing the channel’s surface for better heat dissipation. A photonic crystal fiber (PCF) is a bundle of extremely narrow channels, which ideally work as separation columns. The PCF was simply encapsulated in a polymethylmethacrylate (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 μm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.


Author(s):  
Jianyu Liang ◽  
Zhenhai Xia

Understanding the structure and properties of metal nanowires is critical for the atomic-scale manipulation, design and application of those materials. Currently, active research on structure and behavior of various metallic nanowires has been carried out by computer simulation. Much experimental work has been done for synthesizing various metal nanowires by many different methods. To experimentally explore the mechanism of the behavior of and the development of structures in the nanowires, it is desirable to have the capability of synthesis various metal nanowires with controlled size, length, uniformity and aspect ratio. It is also desirable to further process those metal nanowires to engineer their properties. In our study, a template assisted fabrication method has been employed to fabricate various metal nanowire arrays, including cobalt, iron and nickel. This fabrication method offers us command over the size and length of the nanowires with excellent uniformity. Heat treatments were used to further process the metal nanowires. The structure of cobalt nanowire array has been investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the metal nanowire array will be investigated through nanoindentation and atomic force microscopy (AFM).


Author(s):  
Fahad Mirza ◽  
Gaurang Naware ◽  
Thiagarajan Raman ◽  
Ankur Jain ◽  
Dereje Agonafer

Convergence and miniaturization of consumer electronic products such as cameras, phones, etc. has been driven by enhanced performance and reduced microelectronics size. For past few decades Moore’s law has been driving the microelectronics industry to achieve high performance with small form-factors at a reasonable cost. While the continued miniaturization of the transistors has resulted in unparalleled growth of the electronics industry, further performance increment via size scaling could be cost-ineffective and difficult to manufacture. To satisfy the current/future integrated Circuit (IC) package requirements, vertical integration of chips holds the key, i.e., 3-D packaging. Chip-stacking (3-D) is emerging as a powerful technology to reduce package footprint, decrease interconnection power, higher frequencies, and provide efficient integration of heterogeneous devices. It allows further reduction in the form factor of current systems and eases the interconnect performance limitation since the components are integrated on top of each other instead of side-by-side, resulting in shorter interconnect lengths. Due to high package density and chip-stacking on top of each other, heat dissipation from the stacked chips becomes a concern. To overcome these thermal challenges and provide shorter/faster inter-chip electrical connection, Through Silicon Via (TSV) technology is being implemented in 3-D ICs. TSVs allow 3-D chips to be interconnected directly and provide high speed signal propagation. TSVs provide inter-chip heat/current path but the current flowing through the TSVs results in localized heat generation (Joule Heating) within the silicon, which could be detrimental to the overall performance of the system. In this paper, the effect of Joule heating on the device performance measured by trans-conductance, electron mobility (e− mobility), and channel thermal noise is analyzed. Thinned (100 μm) chips with a uniform power map and evenly distributed TSVs are analyzed in this work. Thermal distribution in the package is studied for different TSV currents including a base-line case of no-current (thermal TSV only) and the junction temperature is determined for each case. The response from the thermal analysis is correlated to the device performance through existing relations. Results indicate that joule heating has a significant effect on the thermal response of the 3D IC and subsequently proves to be detrimental to the chip performance. An understanding of the electrical performance dependence on TSV joule heating is developed through this work.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Aisha M. Alqahtani ◽  
Adnan ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
...  

The flow over a wedge is significant and frequently occurs in civil engineering. It is significant to investigate the heat and mass transport characteristics in the wedge flow. Therefore, the analysis is presented to examine the effects of preeminent parameters by incorporating the cross-diffusion gradients in the energy and mass constitutive relations. From the analysis, it is perceived that the temperature drops against a higher Prandtl number. Due to concentration gradients in the energy equation, the temperature rises slowly. Moreover, it is examined that the mass transfer significantly reduces due to Schmidt effects and more mass transfer is pointed against the Soret number. The shear stresses increase due to stronger magnetic field effects. The local thermal performance of the fluid enhances against more dissipative fluid, and DuFour effects reduced it. Furthermore, the mass transport rate drops due to higher Soret effects and increases against multiple Schmidt number values.


Author(s):  
G. Y. Tang ◽  
C. Yang ◽  
C. J. Chai ◽  
H. Q. Gong

Joule heating is present in electrokinetically driven flow and mass transport in microfluidic systems. Specifically, in the cases of high applied voltages and concentrated buffer solutions, the thermal management may become a problem. In this study, a mathematical model is developed to describe the Joule heating and its effects on electroosmotic flow and mass species transport in microchannels. The proposed model includes the Poisson equation, the modified Navier-Stokes equation, and the conjugate energy equation (for the liquid solution and the capillary wall). Specifically, the ionic concentration distributions are modeled using (i) the general Nernst-Planck equation, and (ii) the simple Boltzmann distribution. These governing equations are coupled through temperature-dependent phenomenological thermal-physical coefficients, and hence they are numerically solved using a finite-volume based CFD technique. A comparison has been made for the results of the ionic concentration distributions and the electroosmotic flow velocity and temperature fields obtained from the Nernst-Planck equation and the Boltzmann equation. The time and spatial developments for both the electroosmotic flow fields and the Joule heating induced temperature fields are presented. In addition, sample species concentration is obtained by numerically solving the mass transport equation, taking into account of the temperature-dependent mass diffusivity and electrophoresis mobility. The results show that the presence of the Joule heating can result in significantly different electroosomotic flow and mass species transport characteristics.


Sign in / Sign up

Export Citation Format

Share Document